Surface Density Structure in Outer Region of Protoplanetary Disk Jul. 24th 2014 Nobeyama UM Eiji Akiyama (NAOJ) Munetake Momose, Yoshimi Kitamura, Takashi.

Slides:



Advertisements
Similar presentations
Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Advertisements

Disk Structure and Evolution (the so-called model of disk viscosity) Ge/Ay 133.
Proto-Planetary Disk and Planetary Formation
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Resolved Inner Disks around Herbig Ae/Be Stars: Near-IR Interferometry with PTI Josh Eisner Collaborators: Ben Lane, Lynne Hillenbrand, Rachel Akeson,
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Science with ALMA Archive Masa Hayashi (NAOJ) East Asia ALMA Science Workshop, Korea (July 14, 2014)
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Gaspard Duchêne UC Berkeley – Obs. Grenoble Gaspard Duchêne - Circumstellar disks and planets - Kiel - May
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Deep Surveys of the Radio Universe with.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
What stellar properties can be learnt from planetary transits Adriana Válio Roque da Silva CRAAM/Mackenzie.
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions Kenneth Wood St Andrews.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
December 14, 2001MISU Page 1 DARWIN D etecting & A nalysing R emote W orlds through I nterferometric N ulling a vessel.
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
Protoplanetary disks as seen by the IRAM array Vincent Pietu (LAOG) A few important points in the observations and analysis related to the survey we have.
Next Gen VLA Observations of Protoplanetary Disks A. Meredith Hughes Wesleyan University ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)
ALMA Observations of Keplerian Disks around Protostars: the case of L1527 Nagayoshi Ohashi (NAOJ) NMA With K. Saigo, Y. Aso, S.-W. Yen, S. Takakuwa, S.
Imaging Molecular Gas in a Nearby Starburst Galaxy NGC 3256, a nearby luminous infrared galaxy, as imaged by the SMA. (Left) Integrated CO(2-1) intensity.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
ALMA Timeline  Design and Development Phase Jun Dec 2001  International partnership established 1999  Prototype antenna contract Dec 99  ALMA/NA.
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
ALMA Observations of proto-planetary disks I HD – P.I. Casassus 2013 Nature 493, 191 Herbig Ae star 140 pc, 2 Myr, 1.9 M , disk mass 0.1 M  Left:
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
Milli-arcsecond Imaging of the Inner Regions of Protoplanetary Disks Stéphanie Renard In collaboration with F. Malbet, E. Thiébaut, J.-P. Berger & M. Benisty.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon.
Gaspard Duchêne UC Berkeley & Obs. Grenoble From circumstellar disks to planetary systems – Garching – Nov
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews,
Imaging a galaxy-scale molecular outflow
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
THE SPATIAL DISTRIBUTION OF LARGE AND SMALL DUST GRAINS IN TRANSITIONAL DISKS ELIZABETH GUTIERREZ VILLANOVA UNIVERSITY 2015 SOCORRO COHORT STUDENT ADVISOR:
Observations of Bipolar planetary nebulae at 30 Micron Kentaro Asano (Univ.Tokyo) Takashi Miyata, Shigeyuki Sako, Takafumi Kamizuka, Tomohiko Nakamura,
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Young planetary systems
Mario van den Ancker – ESO Garching
ALMA does Circumstellar Disks
9-10 Aprile Osservatorio Astronomico di Capodimonte
Probing CO freeze-out and desorption in protoplanetary disks
Disks Around Young Stars with ALMA & SPHEREx
Disk Structure and Evolution (the so-called a model of disk viscosity)
Water Masers in NGC7538 Region
Presentation transcript:

Surface Density Structure in Outer Region of Protoplanetary Disk Jul. 24th 2014 Nobeyama UM Eiji Akiyama (NAOJ) Munetake Momose, Yoshimi Kitamura, Takashi Tsukagosh, Shota Shimada, Masahiko Hayashi, Shin Koyamatsu

Importance of Outer Region of the Disk How is disk gas cleared ? How can planets form at a distant from a central star ? Kalas et al Fomalhaut r = 119 AU

Power Law Disk Model Power law description in surface density was introduced in the minimum mass solar nebula. (e.g. Kusaka et al. 1970, Weidenschilling 1977, Hayashi et al. 1985)

Discrepancy between Dust & Gas Emission Discrepancy in disk size has emerged between the extent of the dust continuum and molecular gas emission. Dust continuum: smaller size Gas emission: larger size Examples ・ AB Aur (Pietu et al. 2005) Continuum (2.8, 1.4mm): 350±30 AU 12 CO(J=2-1): 1050±10 AU ・ HD (Isella et al. 2007) Continuum (0.87-7mm) : 200±15 AU 12 CO(J=3-2) etc: 540±40 AU Is the power law description really appropriate ?

Similarity Solution Disk Model  Surface density is based on the theory of viscous evolution ( Lynden-Bell & Pringle 1974, Hartmann et al. 1998)  Radial temperature distribution Same as power-law disk model power-law similarity x[AU] y[AU] x[AU] log n H2 [1/cc] Log r [AU] Log Σ(r) [g cm -2 ] r out power-law similarity distance where Σ(r) starts decreasing exponentially normalized surface density C2C2

Examples of Similarity Solution velocity [km s -1 ] HD R.A. Dec Power Similarity Hughes et al ALMA SV band7 color: CO(3-2) contour: continuum r [AU] CO(3-2) continuum r c = 125 AU de Gregorio-Monsalvo et al CO(3-2) [Jy/beam] continuum [Jy/beam] Vel. [km/s] CO(3-2) offset [arcsec]

Gallery of Protoplanetary Disks (Radio) Andrews et al Mathew et al Brown et al Cieza et al Isella et al. 2010

Object Details distance [pc]SP typeM * [M ☉ ]M disk [M ☉ ]inclination [deg.] 140A2/ MWC 480 is bright Herbig Ae star with primordial disk. Many people have observed and basic properties are well known. No complex structures → easy to analyze the structure Kusakabe et al Acke & van den Ancker 2004 No complex structures log λ[μm] log λF λ [erg cm -2 s -1 μm] H-band Subaru

Observation Details Telescope Reciever NRO45, ASTE BEARS, T100H/V, CATS345 Lines 12 CO(1-0), 13 CO(1-0), C 18 O(1-0), 12 CO(3-2), 13 CO(3-2) Frequency109 – 115 GHz, 330 – 345 GHz Spatial res.~ 15” (~2100 AU), ~ 23”(~3200 AU) Velocity res.~ – 0.1 km/s Integ. time4.2h (2.0h on source) System temp K

Model Parameters ・ Fixed parameters : The results obtained by other observations applied ・ Free parameters : Best fit parameters are searched ・ X ( 12 CO) = ・ Local Thermal Equilibrium (LTE) ・ X ( 12 CO) / X ( 13 CO) = 60 ・ Hydrostatic Equilibrium ・ X ( 13 CO) / X ( C 18 O) = 5 ・ Outer radius : r out (C 2 ) ・ Temperature : T 100 ・ Surface density : Σ 100 (C 1 ) distance [pc] M * [M ☉ ] inclination [deg.] pq HD

Model Fit Results Similarity solution shows better fit in multi-CO line observation → It supports viscous evolution Akiyama et al. 2013

Observation Details Lines 12 CO(2-1), 13 CO(2-1), C 18 O(2-1) Frequency219 – 230 GHz Spatial res.~ 0.68” x ~ 0.55” FoV~ 27” Proj. baseline16 – 400 m Velocity res.0.3 – 0.66 km/s Integ. time4.2h (2.0h on source) System temp K (0.8mm water vapor) ALMA SV band 6

Results (ALMA SV band 6) 12 CO(2-1) 13 CO(2-1) C 18 O(2-1) 0th1st2nd Akiyama et al. submitted

Results (ALMA SV band 6) 12 CO(2-1) 13 CO(2-1) C 18 O(2-1) 0th1st2nd Akiyama et al. submitted Vlsr [km s-1]Flux Density [Jy] 12CO(2-1)13CO(2-1)C18O(2-1)

Successful Example of SS Model 1 Akiyama et al. submitted CO (2-1) 13 CO (2-1)C 18 O (2-1) PL SS 700

Successful Example of SS Model 2 r out = 700AU, p=1.0, θ=45° T 100 [K] Σ 100 [gm s -1 ] 12 CO(J =3-2) 13 CO(J =3-2) 12 CO(J =1-0) 13 CO(J =1-0) CO(J =3-2) 13 CO(J =1-0) 13 CO(J =3-2) CO(J =1-0) Tmb [K] Tmb [K] Vlsr [km s-1]

Summary 1.MWC 480 was selected for its simple disk structure. 2.Similarity solution model is based on the viscous evolution. → Surface density tapers off gradually with distance. 3.Similarity solution reproduces the observation ・ Verified by NRO45/ASTE (single dish) and ALMA SV (interferometry) and data. ・ Similarity solution model is more suitable than power law for describing disks. → The disk evolves via viscous diffusion