5/20/2015v. Kolck, Halo EFT1 Background by S. Hossenfelder Halo Effective Field Theory U. van Kolck University of Arizona Supported in part by US DOE.

Slides:



Advertisements
Similar presentations
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Advertisements

HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Low-momentum interactions for nuclei Achim Schwenk Indiana University Nuclear Forces and the Quantum Many-Body Problem Institute for Nuclear Theory, Oct.
Nuclear forces from chiral effective field theory: Achievements and challenges R. Machleidt University of Idaho R. Machleidt 1 Nuclear Forces from ChEFT.
Solution of the Deuteron using Perturbation Theory (ongoing work with R. S. Azevedo and Prof. Bira van Kolck) University of Arizona Undergraduate Symposium.
1 A Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen T.E.O. Ericson, B. Loiseau, S. Wycech  It requires careful.
R. Machleidt Collaborators: E. Marji, Ch. Zeoli University of Idaho The nuclear force problem: Have we finally reached the end of the tunnel? 474-th International.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Kˉ- 4 He, Kˉ- 3 He interactions at low energies Vera Grishina (INR RAS, Moscow, Russia) University of Bonn, Germany August 31 – September 5, 2009.
16/3/2015 Baryon-Baryon Interactions From Lattice QCD Martin Savage University of Washington K  (Hyperons 2006, Mainz, Germany)
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Iain Stewart MIT Iain Stewart MIT Nonleptonic Decays and the Soft Collinear Effective Theory Super B Factory Workshop, Hawaii, 2004.
QUARKS, GLUONS AND NUCLEAR FORCES Paulo Bedaque University of Maryland, College Park.
R. Machleidt, University of Idaho University of Idaho The missing three-nucleon forces: Where are they? 2009 Mardi Gras “Special Symmetries and Ab Initio.
R. Machleidt University of Idaho Nuclear forces from chiral EFT: The unfinished business.
R. Machleidt, University of Idaho D. R. Entem, University of Salamanca Sub-Leading Three-Nucleon Forces in Chiral Perturbation Theory.
Effective Field Theory Applied to Nuclei Evgeny Epelbaum, Jefferson Lab, USA PN12, 4 Nov 2004.
1.Introduction 2.Formalism 3.Results 4.Summary I=2 pi-pi scattering length with dynamical overlap fermion I=2 pi-pi scattering length with dynamical overlap.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Baryon Resonances from Lattice QCD Robert Edwards Jefferson Lab N high Q 2, 2011 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
Istanbul 06 S.H.Lee 1 1.Introduction on sQGP and Bag model 2.Gluon condensates in sQGP and in vacuum 3.J/  suppression in RHIC 4.Pertubative QCD approach.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
Interactions of low-energy anti-kaons with lightest nuclei Vera Grishina (INR RAS, Moscow) Moscow, September 17-20, 2009 XII International Seminar on Electromagnetic.
Spin Polarization in d  → n p Chang Ho Hyun Daegu University Work with S. Ando (Daegu) Y.-H. Song (South Carolina) K. Kubodera (South Carolina) HNP2011,
Isospin-dependence of nuclear forces Evgeny Epelbaum, Jefferson Lab ECT*, Trento, 16 June 2005.
Franz Gross - JLab/W&M Covariant dynamical models of photo-and electro- production of pions JLab N* workshop, October 14, 2008  Goals: Definition of the.
Nucleon Polarizabilities: Theory and Experiments
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
R. Machleidt, University of Idaho Recent advances in the theory of nuclear forces and its relevance for the microscopic approach to dense matter.
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) Guan Yeu Chen (Taipei) DMT dynamical model.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
ANALYTIC APPROACH TO CONSTRUCTING EFFECTIVE THEORY OF STRONG INTERACTIONS AND ITS APPLICATION TO PION-NUCLEON SCATTERING A.N.Safronov Institute of Nuclear.
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
Monday, Feb. 7, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #6 Monday, Feb. 7, 2005 Dr. Jae Yu 1.Nature of the Nuclear Force Short Range Nature.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
NUCLEAR ELECTRIC DIPOLE MOMENTS OF FEW-NUCLEON SYSTEMS Young-Ho Song(RISP, Institute for Basic Science) Collaboration with Rimantas Lazauskas( IPHC, IN2P3-CNRS)
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Phys. Lett. B646 (2007) 34, (hep-ph/ ) Non-perturbative effect on thermal relic abundance of dark matter Masato Senami (University of Tokyo, ICRR)
INTRODUCTION TO NUCLEAR LATTICE EFFECTIVE FIELD THEORY Young-Ho Song (RISP, Institute for Basic Science) RI meeting, Daejeon,
7/11/20161 Harmonic Effective Field Theory U. van Kolck University of Arizona with B. Barrett (Arizona) J. Rotureau (Arizona) I. Stetcu (Washington) Supported.
ELECTRIC DIPOLE MOMENTS OF A=3 NUCLEI Young-Ho Song(Institute of Basic Science) Collaboration with Rimantas Lazauskas( IPHC, IN2P3-CNRS) Vladimir Gudkov(
Low energy scattering and charmonium radiative decay from lattice QCD
May the Strong Force be with you
Resonance saturation at next-to-leading order
Nuclear structure calculations with realistic nuclear forces
Mesons, PANDA and the Importance of Scalar Glueball
National Taiwan University
Chiral Nuclear Forces with Delta Degrees of Freedom
Exciting Hadrons Vladimir Pascalutsa
Kernfysica: quarks, nucleonen en kernen
Hadrons and Nuclei : Nuclear Physics
Chiral Nuclear Effective Field Theory
The Operator Product Expansion Beyond Perturbation Theory in QCD
Chieh-Jen (Jerry) Yang
Nuclear Forces - Lecture 5 -
Current Status of EBAC Project
Presentation transcript:

5/20/2015v. Kolck, Halo EFT1 Background by S. Hossenfelder Halo Effective Field Theory U. van Kolck University of Arizona Supported in part by US DOE

5/20/2015v. Kolck, Halo EFT2 Hnning

5/20/2015v. Kolck, Halo EFT3 Outline  EFT  Nucleon-alpha system  Alpha-alpha system  Other systems  Outlook

5/20/2015v. Kolck, Halo EFT4 Nuclear physics scales expansion in perturbative QCD ~1 GeV ~100 MeV hadronic theory Chiral EFT unknown; use brute force (lattice, …) no small coupling constants!

5/20/2015v. Kolck, Halo EFT5 triplet scattering length Deuteron binding energy Fukugita et al. ‘95 Lattice QCD: quenched EFT: (incomplete) NLO Beane, Bedaque, Savage + v.K. ’02 … Large deuteron size because cf. Beane et al ‘06 unitarity limit New scale

5/20/2015v. Kolck, Halo EFT6 Nuclear physics scales expansion in perturbative QCD ~1 GeV ~100 MeV ~30 MeV hadronic theory Contact EFT Chiral EFT unknown; use brute force (lattice, …) no small coupling constants!

5/20/2015v. Kolck, Halo EFT7 Expansion in powers of distance scale of underlying distribution distance scale of interest All possible interactions allowed by gauge invariance

5/20/2015v. Kolck, Halo EFT8 pionless EFT degrees of freedom: nucleons symmetries: Lorentz, B, P, T expansion in: multipole non-relativistic simplest formulation: auxiliary field for two-nucleon bound states Kaplan ’97 v.K. ’99 sign omitting spin, isospin sign

5/20/2015v. Kolck, Halo EFT9 First orders apply also to atoms from describes structure and reactions of bound states -- deuteron, triton, alpha particle can be extended to p-shell nuclei with No-Core Shell Model makes evident new phenomena -- from one-parameter three-body force at LO: SO(4) invariance, limit-cycle behavior, Phillips line, Efimov spectrum Bedaque, Hammer + vK ’98, ’99, ‘00 Hammer, Platter + Meissner ’04 Stetcu, Barrett + v.K. ’07 … - many-body systems get complicated rapidly, just as for models

5/20/2015v. Kolck, Halo EFT10 Halo/Cluster states loosely bound nucleons around tightly bound cores new scale leads to proliferation of shallow states (near driplines): separation energy core excitation energy p n n n p p p n n p core

5/20/2015v. Kolck, Halo EFT11 resonance at e.g. resonance at bound state at resonance at bound state at resonance at

5/20/2015v. Kolck, Halo EFT12 halo EFT degrees of freedom: nucleons, cores symmetries: Lorentz, B, P, T expansion in: non-relativistic multipole simplest formulation: auxiliary fields for core + nucleon states e.g.

5/20/2015v. Kolck, Halo EFT13 Bertulani, Hammer + v.K. ’02 Bedaque, Hammer + v.K. ’03 spin transition operator

5/20/2015v. Kolck, Halo EFT14 = + + … = reduced mass resonance at andif + + … = width

5/20/2015v. Kolck, Halo EFT15 other waves: + + … =

5/20/2015v. Kolck, Halo EFT16 etc.

5/20/2015v. Kolck, Halo EFT17 Bedaque, Hammer + v.K. ’03 Haesner et al. ‘83 NNDC, BNL

5/20/2015v. Kolck, Halo EFT18 except atwhere ++ …= enhanced byresum self-energy

5/20/2015v. Kolck, Halo EFT19 Bertulani, Hammer + v.K. ’02 Haesner et al. ‘83 NNDC, BNL

5/20/2015v. Kolck, Halo EFT20 Bertulani, Hammer + v.K. ’02 PSA, Arndt et al. ’73 scatt length only

5/20/2015v. Kolck, Halo EFT21 Arndt et al ‘73 cf. consistent…

5/20/2015v. Kolck, Halo EFT22 + electromagnetic interactions Coulomb Sommerfeld parameter corrections transverse photons Higa, Bertulani + v.K. in progress = … =+ non-perturbative for

5/20/2015v. Kolck, Halo EFT23 = Coulomb phase shift = + pure Coulomb Coulomb/short-range interference = + + … =

5/20/2015v. Kolck, Halo EFT24 Higa, Hammer + v.K. ’08 deep non-perturbative Coulomb region! Sommerfeld factor = Landau-Smorodinsky function Coulomb-corrected phase shift

5/20/2015v. Kolck, Halo EFT … = unitarity limit in LO : renorm scale “usual” fine-tuning?

5/20/ since Coulomb “short-ranged” + + … = exponentially suppressed

5/20/2015v. Kolck, Halo EFT27 Expansion around pole: exponential suppression

5/20/2015v. Kolck, Halo EFT28 Higa, Hammer + v.K. ‘08 fitted with Extra fitting parameters none Wuestenbecker et al. ‘92 ‘69

5/20/2015v. Kolck, Halo EFT29 Rasche ‘67 Higa, Hammer + v.K. ‘08 cf. consistent… fine-tuning of 1 in 10! but also,

5/20/2015v. Kolck, Halo EFT30 naturalness Fine-tuning of 1 in a 1000 between strong and electromagnetic interactions!! Higa, Hammer + v.K. ‘08 previous fine-tuning Extra fine-tuning of 1 in 100! Rasche ‘67

5/20/2015v. Kolck, Halo EFT31 Next: three-body states Rotureau + v.K., in progress Main issue: three-body force in LO? cf. in pionless EFT Bedaque, Hammer + v.K., ‘98 Ando + Birse, ’10 Koenig + Hammer, ‘11 : yes (preliminary)

5/20/2015v. Kolck, Halo EFT32 Other cores Rupak + Higa, ’11 Fernando, Higa + Rupak, in preparation cf. in pionless EFT Chen, Rupak + Savage, ’99 Rupak, ‘00 other s-, p-wave parameters fit to scattering data, binding energy one-parameter fit Goal: field included for excited core state

5/20/2015v. Kolck, Halo EFT33 Hammer + Phillips, ‘11 Coulomb dissociation of 11Be s-, p-wave parameters fit to binding energies, B(E1) transition strength

5/20/2015v. Kolck, Halo EFT34 Canham + Hammer, ’08, ’10 with spin 0 s-wave interaction at least one Efimov state (negative energies: virtual states)

5/20/2015v. Kolck, Halo EFT35 Forecast QCD Pionful EFT lattice Pionless EFT Halo/cluster EFT Extrapolates to realistically small Low-energy reactions SM Extrapolate to larger and larger NCSM, … Faddeev* eqs, …