Kinematics – the study of how things move

Slides:



Advertisements
Similar presentations
Newton’s Laws of Motion
Advertisements

Unit 4 FORCES AND THE LAWS OF MOTION
FORCE A force is any influence that can change the velocity of a body. Forces can act either through the physical contact of two objects (contact forces:
Newton’s Laws 1. F. Newton’s Laws of Motion  Kinematics is the study of how objects move, but not why they move.  Sir Isaac Newton turned his attention.
Chapter 4 Forces in One Dimension
Laws of Motion Review.
Newton’s Laws.
Forces and The Laws of Motion
ISAAC NEWTON AND THE FORCE Dynamics. Kinematics vs Dynamics Kinematics – the study of how stuff move  Velocity, acceleration, displacement, vector analysis.
Forces 1 Dynamics FORCEMAN. What causes things to move? Forces What is a force? –A push or a pull that one body exerts on another. 2.
Motion & Force: Dynamics Physics 11. Galileo’s Inertia  Galileo attempted to explain inertia based upon rolling a ball down a ramp  Predict what would.
Chapter 4 Preview Objectives Force Force Diagrams
Forces Mass, Weight, and Friction. Weight Weight: force of gravity on an object - on Earth your weight is a direct measure of the planet’s force pulling.
Chapter 4 Section 1 Changes in Motion Force.
Ch. 4 Forces and Laws of Motion
Forces Chapter 6 Pages: Force A force is a push or pull upon an object resulting from the object's interaction with another object. Contact Forces.
Chapter 4 Forces and the Laws of Motion. Chapter Objectives Define force Identify different classes of forces Free Body Diagrams Newton’s Laws of Motion.
Kinematics – the study of how things move Dynamics – the study of why things move Forces (the push or pull on an object) cause things to move Aristotle.
Chapter 4 Preview Objectives Force Force Diagrams
Forces and the Laws of Motion Force, Mass, and Acceleration
Physics Chp4.
EVERY-DAY FORCES Force of gravity Normal force Force of friction Universal force of gravity.
FORCES AND LAWS OF MOTION. FORCE (push) (pull) Examples of forces: ContactField Pulling the handle of the door Pushing a stroller Hitting a tennis ball.
Newton’s 2 nd Law. Force on Object Objects acted on by a net unbalanced force will accelerate in the direction of the force This means they will speed.
Force A push or pull exerted on an object..
© Houghton Mifflin Harcourt Publishing Company The student is expected to: Chapter 4 Section 1 Changes in Motion TEKS 4E develop and interpret free-body.
Forces and the Laws of Motion Chapter Changes in Motion Objectives  Describe how force affects the motion of an object  Interpret and construct.
Newton’s Laws and Dynamics
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
SECOND LAW OF MOTION If there is a net force acting on an object, the object will have an acceleration and the object’s velocity will change. Newton's.
 Isaac Newton  Smart Guy  Liked Apples  Invented Calculus  Came up with 3 laws of motion  Named stuff after himself.
What is a Force? A force is a push or a pull causing a change in velocity or causing deformation.
Physics I Honors 1 Happy New Quarter day I sent an arrow into the air and it landed I know not where. But, It was launched at 30 degrees with a velocity.
Velocity Definition: the speed and direction of motion of an object. Example: The car moved at a velocity of 20 m/s toward the east.
Forces and Free-Body Diagrams
FORCES. A force is an influence on a system or object which, acting alone, will cause the motion of the system or object to change. If a system or object.
Force & Newton’s Laws of Motion. FORCE Act of pulling or pushing Act of pulling or pushing Vector quantity that causes an acceleration when unbalanced.
Remember!!!! Force Vocabulary is due tomorrow
Lecture 9: Forces & Laws of Motion. Questions of Yesterday You must apply a force F to push your physics book across your desk at a constant velocity.
Force A. Force is the push or pull exerted on an object. 1. Contact force: “I can not touch you without you touching me” 2. Field force: ‘How does the.
Introduction to Newton’s Laws
Bellwork Pick up a free-body diagram sheet and begin working on it.
Newton’s Second Law of Motion – Force & Acceleration
Ch 4 – Forces and the Laws of Motion. What is a force? A force is a push or pull A force causing a change in velocity –An object from rest starts moving.
Newton’s 1 st Law of Motion. Newton’s 1 st Law Newton’s 1 st Law: An object at rest stays at rest and an object in motion stays in motion, unless acted.
The tendency of objects to resist change in their state of motion is called inertia  Inertia is measured quantitatively by the object's mass.  Objects.
Dynamics!.
Forces What is a Force? A force is any push or pull on an object A force does NOT always require contact –Gravity –Electrostatic –Magnetism.
Forces and the Laws of Motion
Welcome to Physics 101! Lecture 01: Introduction to Forces
Basic Information: Force: A push or pull on an object Forces can cause an object to: Speed up Slow down Change direction Basically, Forces can cause an.
Newton’s 1 st Law of Motion. Newton’s 1 st Law Newton’s 1 st Law: An object at _______stays at _______and an object in motion stays in motion, unless.
Forces, The laws of Motion & Momentum.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Force Force Diagrams Chapter 4 Section 1 Changes in Motion.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces are pushes or pullss can cause acceleration. are.
REVISION NEWTON’S LAW. Quantity with magnitude and direction. e.g. displacement, velocity, acceleration, force and weight.. VECTOR Quantity having only.
Test #3 Notes Forces and the Laws of Motion Circular Motion and Gravitation Chapters 4 and 7.
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
Forces and Newton’s Laws of Motion. A force is a push or a pull. Arrows are used to represent forces. The length of the arrow is proportional to the magnitude.
Forces Chapter 6.1. What You Already Learned Velocity is the ratio of the change in position of an object over a period of time. Acceleration describes.
Physics Chapter 4 Forces and the Laws of Motion. §A force is defined as a push or pull exerted on an object. §Forces can cause objects to speed up, slow.
CHAPTER 2 MOTION. PS 10 a,b The student will investigate and understand scientific principles and technological applications of force, and motion. Key.
1 Physics: Chapter 4 Forces & the Laws of Motion Topics:4-1 Changes in Motion 4-2 Newton’s First Law 4-3 Newton’s Second & Third Laws 4-4 Everyday Forces.
Resources Section 1 Laws of Motion Objectives Identify the law that says that objects change their motion only when a net force is applied. Relate the.
Forces 1 Dynamics FORCEMAN. What causes things to move? Forces What is a force? –A push or a pull that one body exerts on another. 2.
Newton’s Laws of Motion Chapters 2,3,6,7
Forces.
Forces and Newton’s Laws of Motion
The study of why objects move.
Chapter 12 Forces and Motion
Presentation transcript:

Kinematics – the study of how things move Dynamics – the study of why things move Forces (the push or pull on an object) cause things to move Newton proposed three Laws of Motion that allow us to understand how forces cause things to move

Four Basic Forces Applied force (Fa) – a force that is done by an external cause (agent). It can be any direction. Gravitational force (Fg or W) -- the force caused by gravity (weight). It always acts downward. Frictional force (Ff) -- a force that opposes motion and slows down objects. It is always parallel to the surface. Normal force (Fn) – the force exerted by a surface on which an object is resting. It is always perpendicular to the surface.

Example: book being pushed on table Net force (ΣF) – the sum of all forces that act on an object. A free body diagram (FBD) shows all of the forces that are present on an object both in the horizontal and vertical direction. Example: book being pushed on table book FBD Net Force Equations Fn Ff Σ Fx = Fa - Ff Σ Fy = Fn - Fg Fa book Fg

Mass A measurement of an object’s quantity of matter A measurement of an object’s inertia Inertia – the tendency of objects to maintain their state of rest or to maintain constant velocity Example: car slams on brakes and items on seat fall to floor

Objects with a larger mass have a greater inertia Objects with a larger mass have a greater inertia. Therefore, they are harder to accelerate (speed up or slow down)

Inertia can give the impression that forces are being applied. Force is not being applied to rider. Rider is moving at constant velocity because of inertia.

Newton’s First Law – an object at rest tends to stay at rest and an object in uniform motion tends to stay in uniform motion (constant velocity) unless acted upon by a net external force Newton’s First Law is also known as the Law of Inertia.

Newton observed some things about accelerating objects: The bigger the force, the greater the acceleration The larger the mass, the smaller the acceleration Newton’s Second Law – the acceleration of an object is directly proportional to the net force acting on the object and inversely proportional to its mass

Σ F = ma F = force (Newtons) m = mass (kg) a = acceleration (m/s2)

What net force is required to bring a 1500-kg car to rest from a speed of 28 m/s within a distance of 55 m?

A 70-kg person traveling at 100 km/hr strikes a parked car A 70-kg person traveling at 100 km/hr strikes a parked car. At the instant of impact, the seat belt restrains the person with a force of 21,000 N bring them to rest in the car. How far does the person travel before coming to rest?

Newton believed that the “force-providers” also are “force-receptors.” When a force is applied to an object, it is always exerted by another object. Examples: a hammer hits a nail a child pulls a sled an apple is pulled to the Earth Newton believed that the “force-providers” also are “force-receptors.” Examples: the nail pushes back on the hammer the sled pulls back on the child the Earth is pulled to the apple

Newton’s Third Law – Whenever one object exerts a force on an second object, the second exerts an equal force in the opposite direction on the first If every force has an equal and opposite force, why dos objects ever move? The forces are NOT exerted on the same object. Example: If a hammer exerts a 50-N force on a nail, the nail exerts a 50-N force on the hammer in the other direction. Evidence: Hammer causes the nail to accelerate (+ force) while the nail causes the hammer to decelerate (- force)

Weight and Normal Force A measure of the gravitational force on an object Always directed downward (toward the center of the Earth Fg = mg A person’s mass does not change, but his weight does depending on the magnitude of gravitation force.

An average man has a weight of 686 N on the Earth. What is the man’s mass? What would his weight be if he was standing on the moon (ag = 1.6 m/s2)

A person pulls upward on string attached to a box with a force of 150 N. The box has a mass of 12 kg. Does the box move upward and if so, with what acceleration does it move?

A contact force that is perpendicular to the surface The force that pushes up on the object resting on the surface Since the statue is at rest FN is equal and opposite to FG. FN has another equal and opposite force (F’N is reaction force on table)

Friction Friction is the resistance that an object experiences when moving. Caused by a rough surface. Object on a rough surface actually has to move up and down because the two rough surfaces catch on each other. Because energy is used to move the moving object up and down, less energy is used to move the moving object forward.

The force of friction is influenced by two factors – the surface on which an object is moving and the weight (gravitational force) of the object. Ff = μFn Coefficient of friction (μ) – indicates the “roughness” of the surface. Unique to each surface. Typically, the normal force of the object is just equal and opposite to the gravitational force (but not always).

Two Types of Friction Static (Stationary Object) If an object is at rest, an applied force has to exceed the maximum static frictional force of the object for it to move Ffs = μsFn Kinetic (Moving Object) If an object is moving, there is a kinetic frictional force that opposes motion (always less than static frictional force) Ffk = μkFn static friction applied box at rest applied kinetic friction box in motion

A 10. 0-kg box rests on a horizontal floor A 10.0-kg box rests on a horizontal floor. The coefficient of static friction is 0.40 and the coefficient of kinetic friction is 0.30. Determine the maximum static frictional force and the kinetic frictional force. Would the box move if a 10 N force was applied? If so, what would be its acceleration? Would the box move if a 40 N force was applied? If so, what would be its acceleration?