Quantum Dots in Photonic Structures

Slides:



Advertisements
Similar presentations
EXPLORING QUANTUM DOTS
Advertisements

6.772SMA Compound Semiconductors Lecture 5 - Quantum effects in heterostructures, I - Outline Quantum mechanics applied to heterostructures Basic.
Module A-2: SYNTHESIS & ASSEMBLY
PART IV: EPITAXIAL SEMICONDUCTOR NANOSTRUCTURES  Properties of low-dimensional quantum confined semiconductor nanostructures  Fabrication techniques.
Quantum Dots.
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
© 2013 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 3 Crystals and Lattices Online reference:
Coulomb Interaction in quantum structures - Effects of
Tin Based Absorbers for Infrared Detection, Part 2 Presented By: Justin Markunas Direct energy gap group IV semiconductor alloys and quantum dot arrays.
CHAPTER 3 Introduction to the Quantum Theory of Solids
Solid state Phys. Chapter 2 Thermal and electrical properties 1.
Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.
Advanced Semiconductor Physics ~ Dr. Jena University of Notre Dame Department of Electrical Engineering SIZE DEPENDENT TRANSPORT IN DOPED NANOWIRES Qin.
Nanomaterials & Nanotechnology
1 Motivation (Why is this course required?) Computers –Human based –Tube based –Solid state based Why do we need computers? –Modeling Analytical- great.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Project topics due today. Next HW due in one week
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Quantum Dots: Confinement and Applications
Quantum Dots in Photonic Structures
Yat Li Department of Chemistry & Biochemistry University of California, Santa Cruz CHEM 146_Experiment #6 A Visual Demonstration of “Particle in a Box”
Physics 355. Consider the available energies for electrons in the materials. As two atoms are brought close together, electrons must occupy different.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Quantum Dots in Photonic Structures Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL /11 współfinansowany przez Unię Europejską.
Science and Technology of Nano Materials
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
„ZnO nanodots and nanowires“ Jarji Khmaladze – Ivane Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences Tbilisi
Quantum Dots in Photonic Structures (Nanophotonics with Quantum Dots) Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL /11.
Charge Carrier Related Nonlinearities
Nanomaterials – Electronic Properties Keya Dharamvir.
15_01fig_PChem.jpg Particle in a Box. Recall 15_01fig_PChem.jpg Particle in a Box.
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
Absorption Spectra of Nano-particles
UNIT 1 FREE ELECTRON THEORY.
Ordered Quantum Wire and Quantum Dot Heterostructures Grown on Patterned Substrates Eli Kapon Laboratory of Physics of Nanostructures Swiss Federal Institute.
Quantum Dot Led by Ignacio Aguilar. Introduction Quantum dots are nanoscale semiconductor particles that possess optical properties. Their emission color.
Quantum Confinement BW, Chs , YC, Ch. 9; S, Ch. 14; outside sources.
Quantum Dots in Photonic Structures Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL /11 współfinansowany przez Unię Europejską.
Basic Science of Nanomaterials (Ch. 11)
Electrochromic Nanocrystal Quantum Dots Prof. Philippe Guyot-Sionnest’s group (Univ. of Chigaco) : 1. Electrochromic Nanocrystal Quantum Dots, Science.
Quantum Mechanics Tirtho Biswas Cal Poly Pomona 10 th February.
Quantum Dots – a peep in to Synthesis Routes Saurabh Madaan Graduate student, Materials Science and Engineering, University of Pennsylvania.
Last Time The# of allowed k states (dots) is equal to the number of primitive cells in the crystal.
Particle in a “box” : Quantum Dots
0-D, 1-D, 2-D Structures (not a chapter in our book!)
BASICS OF SEMICONDUCTOR
4.12 Modification of Bandstructure: Alloys and Heterostructures Since essentially all the electronic and optical properties of semiconductor devices are.
Semiconductor quantum well
1 Material Model 2 Single Electron Band Structure in Bulk Semiconductors.
Nanoelectronics Chapter 5 Electrons Subjected to a Periodic Potential – Band Theory of Solids
LECTURE 5 BASICS OF SEMICONDUCTOR PHYSICS. SEMICONDUCTOR MATERIALS.
Kronig-Penney model and Free electron (or empty lattice) band structure Outline: Last class: Bloch theorem, energy bands and band gaps – result of conduction.
Quantum Confinement BW, Chs , YC, Ch. 9; S, Ch. 14; outside sources.
Question on Van der Waals Interactions
Summary of last lecture
3.1.4 Direct and Indirect Semiconductors
Insulators, Semiconductors, Metals
Solids and semiconductors
Quantum Dot Lasers ASWIN S ECE S3 Roll no 23.
Band Theory of Solids 1.
Solids and Bandstructure
More Wave Equation Solutions Leading To Energy Bands 23 and 25 January 2017.
More Wave Equation Solutions Leading To Energy Bands 3 and 5 February 2014.
Energy Band 7 In free electron model, electrons occupy positive energy levels from E=0 to higher values of energy. They are valence electron so called.
Lecture 8: Volume Interactions
Semiconductor quantum well
More Wave Equation Solutions Leading To Energy Bands 2 and 4 February 2015.
More Wave Equation Solutions Leading To Energy Bands 30 January And 1 February 2019.
Semiconductor quantum well
Atilla Ozgur Cakmak, PhD
Presentation transcript:

Quantum Dots in Photonic Structures Lecture 7: Low dimensional structures Jan Suffczyński Wednesdays, 17.00, SDT Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki

Plan for today Reminder 2. Doping and holes 3. Low dimensional structures

Wigner-Seitz Cell construction Form connection to all neighbors and span a plane normal to the connecting line at half distance

Bloch waves Bloch’s theorem: Solutions of the Schrodinger equation Felix Bloch 1905, Zürich - 1983, Zürich for the wave in periodic potential U(r) = U(r+R) are: Periodic (unit cell) part Envelope part Bloch function: modified slide from Rob Engelen

Nearly free electron model Origin of a band gap! Kittel

Isolated Atoms

Diatomic Molecule

Four Closely Spaced Atoms conduction band valence band

Band formation

Electronic energy bands allowed energy bands

Brilluoin zones e (k): single parabola folded parabola

Electron velocity and effective mass in the k-space

Electron velocity and effective mass in the k-space On crossing the zone boundary, the phase velocity changes direction: the electron is reflected Velocity is zero at the top and bottom of energy band.

Electron velocity and effective mass in the k-space Velocity is zero at the top and bottom of energy band, the. Efective mass: m*>0 at the band bottom, m*<0 at the band top, in the middle: m*→±∞ (effective mass description fails here).

Doping of semiconductors

Holes Consider an insulator (or semiconductor) with a few electrons excited from the valence band into the conduction band Apply an electric field Now electrons in the valence band have some energy states into which they can move The movement is complicated since it involves ~ 1023 electrons

Holes We can “replace” electrons at the top of the band which have “negative” mass (and travel in opposite to the “normal” direction) by positively charged particles with a positive mass, and consider all phenomena using such particles Such particles are called Holes Holes are usually heavier than electrons since they depict collective behavior of many electrons

Low-dimensional structures

Dimensionality 2 1 2 21 2 22 2 23 Increase of the dimension in one direction Increase of the volume 2 1 2 21 2 22 Jednym z ulubionych fraktali Mandelbrota jest wybrzeże Wielkiej Brytanii. Ktoś mógłby naiwnie sądzić, że brzeg ma dobrze określoną długość. Mandelbrot wykazał jednak, że to nieprawda: wynik zależy od skali, w jakiej wykonujemy pomiary. Gdybyśmy mierzyli długość angielskiego wybrzeża stukilometrowym prętem, pominęlibyśmy takie jego cechy jak ujście Tamizy, Wash, Firth of Forth czy Kanał Bristolski. Pręt o długości 10 km pozwoliłby uwzględnić takie duże struktury, ale pominąłby ujścia mniejszych rzek i niewielkie zatoki. Można byłoby je uwzględnić, używając pręta o długości 1 km lub 1 m, ale wtedy nadal ignorowalibyśmy wiele drobnych elementów, takich jak głazy. Im mniejsza skala pomiaru, tym większa długość linii brzegowej. Wynik zależy od skali ponieważ wybrzeże ma cechy fraktalne: wykazuje przybliżone samopodobieństwo na wszystkich poziomach, od wielkich kanałów do małych kamyków. Wymiar wybrzeża leży zatem pomiędzy 1 i 2 - nie jest to ani regularna krzywa, ani też pełny, dwuwymiarowy obiekt geometryczny. 2 23

Low-dimensional structures B A z B A z z A quantum dot quantum wire quantum well 21

Discrete States Quantum confinement  discrete states Energy levels from solutions to Schrodinger Equation Schrodinger equation: For 1D infinite potential well If confinement in only 1D (x), in the other 2 directions  energy continuum x=0 x=L V

Quantum Wells Energy of the first confined level Decrease of the level energy when width of the Quantum Well decreased W. Tsang, E. Schubert, APL’1986

Quantum Wells Energy of confined levels GaAs/AlGaAs Quantum Well R. Dingle, Festkorperprobleme’1975

In 3D… For 3D infinite potential boxes Simple treatment considered Potential barrier is not an infinite box Spherical confinement, harmonic oscillator (quadratic) potential Only a single electron Multi-particle treatment Electrons and holes Effective mass mismatch at boundary

Density of states Structure Degree of Confinement Bulk Material 0D Quantum Well 1D 1 Quantum Wire 2D Quantum Dot 3D d(E)

Quantum Dots

QD as an artificial atom

QD as an artificial atom Quantum Dot 3D confinement of electrons Discrete density of electron states Emission spectrum composed of individual emission lines Non-classical radiation statistics (e. g. single photon emission) Creation of „molecules” possible Większość ze współcześnie dyskutowanych zastosowań rzeczywiście wykorzystuje właściwości pojedynczych kropek kwantowych wynikające z w pełni dyskretnego widma energetycznego i podobieństw do atomów. Stąd teŜ kropki kwantowe są często nazywane sztucznymi atomami. NaleŜy mieć jednak świadomość, Ŝe analogie te wcale nie są za daleko idące, i Ŝe system otrzymywany sztucznie przez człowiek w ciele stałym, róŜni się wciąŜ istotnie pod wieloma względami od naturalnych atomów. Na Rys. 2.3 pokazano porównanie obrazu atomu helu oraz typowej samo rosnącej kropki półprzewodnikowej z arsenku indu w matrycy z arsenku galu. Widoczna jest natychmiast róŜnica w skali wielkości, czy geometrii.

QD as an artificial atom - differences Quantum Dot Size 0.1 nm 10 nm Confining potential Coulombic (~1/r2) Parabolic Electron binding energy 10 eV 100 meV Interaction of electron with environement Weak Strong (phonons, charges, nuclear spins…) Anisotropy of confining potential No Yes (shape, compoistion, strain…)

QD size Should be small enough to see quantum effect kBT at 4.2 K ~0.36 meV --> for electron maximum dimension in 1D ~100-200 nm Small size  larger energy level separation (Energy levels must be sufficiently separated to remain distinguishable under broadening, e.g. thermal)

QD types and fabrication methods Goal: to engineer potential energy barriers to confine electrons in 3 dimensions Basic types/methods Colloidal chemistry Electrostatic Lithography Epitaxy Fluctuation Self-organized Patterned growth - „Defect” QDs

Colloidal Particles Engineer reactions to precipitate quantum dots from solutions or a host material (e.g. polymer) In some cases, need to “cap” the surface so the dot remains chemically stable (i.e. bond other molecules on the surface) Can form “core-shell” structures Typically group II-VI materials (e.g. CdS, CdSe) Size variations ( “size dispersion”) Si nanocrystal, NREL CdSe core with ZnS shell QDs Red: bigger dots! Blue: smaller dots! Evident Technologies: http://www.evidenttech.com/products/core_shell_evidots/overview.php Sample papers: Steigerwald et al. Surface derivation and isolation of semiconductor cluster molecules. J. Am. Chem. Soc., 1988.

Electrostatically defined QDs Only one type of particles (electron or holes) confined --> (No spectroscopy)

Lithography defined QDs QW etching and overgrowth QW Etching V.B. Verma, M.J. Stevens, K.L. Silverman, N.L. Dias, A. Garg, J.J. Coleman and R.P. Mirin. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot. Optics Express. Vol. 19, No. 5, Feb. 28,  2011, p. 4182. Verma/NIST Overgrowth Mismatch of bandgaps  potential energy well The advantage: QD shaping and positioning The drawback: poor optical signal (dislocations due to the etching!)

Lithography defined QDs V. B. Verma et al., Opt. Express’2011

Lithography Etch pillars in quantum well heterostructures Quantum well heterostructures give 1D confinement Pillars provide confinement in the other 2 dimensions Disadvantages: Slow, contamination, low density, defect formation A. Scherer and H.G. Craighead. Fabrication of small laterally patterned multiple quantum wells. Appl. Phys. Lett., Nov 1986.

Flucutation type QDs Flucutation of QW thickness Flucutation of QW composition

Epitaxy: Self-Organized Growth Lattice-mismatch induced island growth Self-organized QDs through epitaxial growth strains Stranski-Krastanov growth mode (use MBE, MOCVD) Islands formed on wetting layer due to lattice mismatch (size ~10s nm) Disadvantage: size and shape fluctuations, strain, Control island initiation Induce local strain, grow on dislocation, vary growth conditions, combine with patterning