Mitglied der Helmholtz-Gemeinschaft Ultimate precision X-ray spectroscopy of hadronic atoms Detlev Gotta Institut für Kernphysik, Forschungszentrum Jülich.

Slides:



Advertisements
Similar presentations
Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Collisional-Radiative Modeling of EBIT Spectra of High-Z Ions Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD ADAS.
Rory Miskimen University of Massachusetts, Amherst
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
First measurement of kaonic hydrogen and nitrogen X-rays at DA  NE J. Zmeskal Institute for Medium Energy Physics, Vienna for the DEAR Collaboration LNF.
1 A Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen T.E.O. Ericson, B. Loiseau, S. Wycech  It requires careful.
The charmonium mass spectrum
Deeply Bound Pionic States in Sn at RIBF N. Ikeno (Nara Women’s Univ. M1) J. Yamagata-Sekihara (IFIC, Valencia Univ.) H. Nagahiro (Nara Women’s Univ.)
May/27/05 Exotic Hadron WS 1 Hypothetical new scaler particle X for  + and its search by the (K +, X + ) reaction T. Kishimoto Osaka University.
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
F.Sanchez (UAB/IFAE)ISS Meeting, Detector Parallel Meeting. Jan 2006 Low Energy Neutrino Interactions & Near Detectors F.Sánchez Universitat Autònoma de.
J. Marton / IMEPRECFA Meeting, Innsbruck, March 26, 2004 EXOTIC ATOM RESEARCH AT DAΦNE J. Marton Institute for Medium Energy Physics Austrian Academy of.
TIME-LIKE BARYON FORM FACTORS: EXPERIMENTAL SITUATION AND POSSIBILITIES FOR PEP-N Roberto Calabrese Dipartimento di Fisica and I.N.F.N. Ferrara, Italy.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
Mass Spectrometry Brief introduction (part1) I. Sivacekflerovlab.jinr.ru 2012 Student Practice in JINR Fields of Research 1.oct.2012.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Lecture 11b Atomic Physics & Nuclear Reactions Copyright © 2009 Pearson Education, Inc.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
Catalina Petrascu (Curceanu) for the DEAR Collaboration 26th LNF Scientific Committee meeting Frascati, 29 – 30 May 2003.
The search for deeply bound kaonic nuclear states at J-PARC Toshihiko Hiraiwa Kyoto University On behalf of the J-PARC E15 collaboration.
LENS-CAL I. Barabanov, V. Gurentsov, V. Kornoukhov Institute for Nuclear Research, Moscow and R. S. Raghavan, Virginia Tech LONU-LENS Blacksburg, Oct 15,
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
The atom and its nucleus By the end of this chapter you should be able to: appreciate that atomic spectra provide evidence for an atom that can only take.
Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
Meson Assisted Baryon-Baryon Interaction Hartmut Machner Fakultät für Physik Universität Duisburg-Essen Why is this important? NN interactions  Nuclear.
Leonid AFANASYEV JOINT INSTITUTE FOR NUCLEAR RESEARCH on behalf of the DIRAC collaboration 37 th International Conference on High Energy Physics 2 – 9.
1 S. Wycech (Warsaw, Poland), B. Loiseau Antiproton-proton resonant like channels in decays Beijing 09/2004  Scattering lengths for 2I+1,2S+1 L J states.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Mitglied der Helmholtz-Gemeinschaft Calibration of the COSY-TOF STT & pp Elastic Analysis Sedigheh Jowzaee IKP Group Talk 11 July 2013.
Photon 2003Falk Meissner, LBNL Falk Meissner Lawrence Berkeley National Laboratory For the STAR Collaboration Photon 2003 April 2003 Coherent Electromagnetic.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Nucleon Form Factors and the BLAST Experiment at MIT-Bates
J. Marton on behalf SIDDHARTA/SIDDHARTA2 Stefan Meyer Institute, Vienna Hadron 2015, Newport News SIDDHARTA results and implications of the results on.
Mitglied der Helmholtz-Gemeinschaft Physics at COSY-Jülich December 2010 | Hans Ströher (Forschungszentrum Jülich, Univ. Cologne) Baryons´10, Osaka (Japan),
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Measuring the charged pion polarizability in the  →    −  reaction David Lawrence, JLab Rory Miskimen, UMass, Amherst Elton Smith, JLab.
FB18, Santos JZ / Aug. 25, 2006 Experimental Studies on Kaonic Atoms at DA  NE Johann Zmeskal Stefan Meyer Institute for subatomic Physics Austrian Academy.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
The Structure and Dynamics of Solids
Review of τ -mass measurements at e + e - - colliders Yury Tikhonov (Budker INP) Contents  Introduction  Current status of τ-mass measurements and μτ.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
PIONIC HYDROGEN goal of the measurements experimental approach and challenge strong-interaction shift  1s and width  1s D. Gotta, IKP, FZ Jülich for.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
J. Marton, FB18, August 21 – 24, 2006, Santos, Brasil 1 Precision Studies on Strong Interaction in Pionic Hydrogen J. Marton Stefan Meyer Institut (SMI)
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
A Precision Measurement of G E p /G M p with BLAST Chris Crawford Thesis Defense April 29, 2005.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
(on behalf of SIDDHARTA-2 collaboration)
The role of isospin symmetry in medium-mass N ~ Z nuclei
Baryonium a common ground for atomic and high energy physics
Open quantum systems.
The Weak Structure of the Nucleon from Muon Capture on 3He
PROBING STRONG INTERACTION WITH SIDDHARTA-2
Presentation transcript:

Mitglied der Helmholtz-Gemeinschaft Ultimate precision X-ray spectroscopy of hadronic atoms Detlev Gotta Institut für Kernphysik, Forschungszentrum Jülich / Universität zu Köln GGSWBS'14, Tbilisi, Georgia 6th Georgian – German School and Workshop in Basic Science - lecture July 10, 2014

Folie 2 MOTIVATION EXOTIC ATOM EXPERIMENTAL APPROACH SOME RESULTS

Folie 3 MOTIVATION EXOTIC ATOM EXPERIMENTAL APPROACH SOME RESULTS

Folie 4 PIONS, NUCLEONS,..., CHIRAL PERTURBATION THEORY, …

Folie 5 PIONS, NUCLEONS - INTERACTION in terms of QCD N  N  N   N

Folie 6 spin-spin "deuteron" no microscopic theory spin-orbit effects  check spin dependence ! Buck, Dover, Richard, Ann. Phys. (NY) 121 (1979) 47 ANTINUCLEON - NUCLEON, …, no microscopic theory

Folie 7 MOTIVATION EXOTIC ATOM EXPERIMENTAL APPROACH SOME RESULTS

Folie 8 ATOM s - state d - state p - state s - state p - state n = 40 l = 39 r / a Bohr 1600

Folie 9 EXOTIC ATOM replace electrons by heavier negatively charged particles m B 1 "Bohr" radius a 0 / MeV/c 2 / keV / fm atomic e  p ·10 5 µ  p   p p p "nuclear“ 0.8 dimensions – n = 40 l = 39 r / a Bohr 1600

Folie 10 X-radiation CAPTURE and DE - EXCITATION internal Auger effect different de-excitation cascades for leptons µ pure electromagnetic cascade hadrons , K, p, … … + nuclear reactions for low l - states

Folie 11 including STRONG INTERACTION self energy vakuum polarisation + higher orders long range: m  = 0 m  = 0

Folie 12   1s  1s level shift  level broadening  strong - interaction effect   E strong reduces to complex numbers - scattering length a S for s-waves - scattering volume a p for p-waves HADRONIC ATOM 1s:  10 (r)  2 r 2 dr 2p:  21 (r)  2 r 2 dr nuclear density  (r) 1 5 r / fm probability density  nl (r)  2 r 2 dr A1A1 A>>1 hadronic effects in l > 0 states r / fm

Folie 13 example pions + diatomic molecules H 2, N 2, … FATE OF HADRONIC ATOMS

Folie 14 MOTIVATION EXOTIC ATOM EXPERIMENTAL APPROACH SOME RESULTS

Folie 15 APPROPRIATE TOOLS

Folie 16 TWO IMPORTANT EXAMPLES pionic hydrogen antiprotonic hydrogen

Folie 17 Balmer series   from high (n,l=2) states KK pH 30 mbar Si(Li) –   40 meV  1 keV  1 eV ENERGY RANGE access to strong interaction effects crystal spectrometer  H 10  stp fast CCD Lyman series from high (n,l=1) states crystal spectrometer direct measurement

Folie 18 EXPERIMENT I How to produce a suitable X-ray source = many of exotic atoms?

Folie 19 increase in stop density compared to a linear stop arrangement pions (PSI) x 200 antiprotons (LEAR)x 10 6  high X - ray line yields  bright X - ray source X-ray detector CYCLOTRON TRAP concentrates particles L. Simons, Physica Scripta 90 (1988), Hyperfine Int. 81 (1993) 253 r

Folie 20   CYCLOTRON TRAP superconducting split-coil magnet

Folie 21 H2H2H2H2 22 cm gas inlet 5  m Mylar® 5 cm target cell ~1 bar ~22 K density equivalent ~12.5 bar ~293 K X-rays CYCLOTRON TRAP pion and muon setup

Folie 22 DEGRADERS and CRYOGENIC TARGET inside CYCLOTRON TRAP II one half of yoke of super-conducting split coil magnet X - rays   beam    20 mm no cell necessary

Folie 23 EXPERIMENT II How to measure the resolution of the crystal spectrometer ?

Folie 24 norder of diffraction wave length dspacing of diffracting planes  B Bragg angle BRAGG'S LAW n = 2d  sin  B 1 2  1   1 22  e extinction lengthcoherent reflection  a absorption lengthincoherent usually  e <<  a  angular spread of reflection 2 > 1

Folie 25 complex index of refraction A. E. Sandström, Handbuch Physik XXX, 1952 p.78 reflectivity R C & energy resolution  E critical behavior close to absorption edges (anomalous dispersion)  < 1 resolution rate  H(2-1) µH(2-1) calculated by means of diffraction theory

Folie 26 calculated CRYSTAL RESPONSE diffraction theory XOP2 code plane crystal 387 meV no narrow few keV  lines silicon 111 response for real crystal mounting?

Folie 27 accuracy limited by natural line width ! excitation of Si X-rays by means of X-ray tube high rate CALIBRATION by fluorescence X-rays large line width and satellites - resolution hardly measurable closest to energy of pH(3d-2p)  rocking curve

Folie 28 accuracy limited by rate !  E = 286  7 meV 920 events 3 days RESPONSE FUNCTION from exotic atoms closest to energy of pH(3d-2p) 

Folie 29 water cooled hexapole SPECTROMETER RESPONSE new approach: ECRIT + = permanent hexapole ● AECR-U type ● 1 Tesla at the hexapole wall ● open structure Superconducting coils ● cyclotron trap S. Biri, L. Simons, D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116 K. Stiebing, Frankfurt – design assistance large mirror ratio = 4.3 B max / B min ! ECRIT = Electron Cyclotron Resonance Ion Trap

„burning“ argon Ar / O 2 (1/9) 1.4  mbar

Folie 31 M1 transitions in He - like S  H(2p-1s) Cl  H(3p-1s) Ar  H(4p-1s) events in line (3 h)  tails can be fixed with sufficient accuracy to be compared with Monte-Carlo ray tracing folded with plane crystal response  = 10 –8 s 2 3 S 1  1 1 S 0 M1 transition SPECTROMETER RESPONSE at  H Lyman ENERGIES D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9 D.F.Anagnostopoulos et al., Nucl. Instr. Meth. A 545 (2005) 217

Folie 32 EXPERIMENT III How to achieve ultimate energy determination and resolution together with sufficient count rate?

Folie 33 JOHANN-TYPE SET-UP high stop density  high X - ray line yields  bright X - ray source position & energy resolution  background reduction I by analysis of hit pattern ultimate energy resolution rate! X-ray  single pixel pion beam

Folie 34 Si 111 spherically curved R = 3 m  = 10 cm X - rays   beam       = 26 ns 10 9  /s iron yoke  CRYOGENIC TARGET image area storage area flexible boards cooling (LN 2 )   pixel size 40 µm  40 µm CYCLOTRON TRAPLarge - Area Focal Plane Detector one coil removed SOURCE BRAGG CRYSTAL 3  2 CCD array see talk by M. Jabua N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419

Folie 35 pion stops in gas: few % all others: 1 pion makes 5 neutrons  TYPICAL SET-UP at PSI peak/background x 10 without concrete P/BG  7:1 pionic hydrogen 0 with concrete P/BG  65:1 background reduction II setup  H(4-1) and  D(3-1)  Bragg  40° CCD crystal cyclotron trap

Folie 36 MOTIVATION EXOTIC ATOM EXPERIMENTAL APPROACH SOME RESULTS

Folie 37 PION – NUCLEON SCATTERING LENGTHS „QCD Lamb shift“

Folie 38  H elastic scattering   p    p + …  D coherent sum   p    p +   n + … HYDROGEN & DEUTERIUM - ORIGIN OF  1s  N N  N HYDROGEN - ORIGIN OF  1s  H scattering   p   0 n + n  CEX = charge exchange BR P well known from experiment P =  0 n/n  =  radiative capture  N CEX scattering  N

Folie 39 PIONIC HYDROGEN 3p-1s transition D. Gotta, IKP, FZ Jülich scattering lengths  H  1s  a  -p  -p  a  + a  + …  1s  (a  -p   n ) 2  (a  ) 2 + …  D  1s  a  -d  -d  2  a  + … Trueman correction  * …  1% + (  9.0  3.5)% …  1%+ (+0.5  1.0)% …  1% +  4% experiment  0.2%  2.5%  1.3% measured X-ray spectrum * J. Gasser et al., Phys. Rep. 456 (2008) 167 M. Hoferichter et al., Phys. Lett. B 678 (2009) 65 V. Baru et al., Phys. Lett. B 694 (2011) 473  1s =  eV (  0.13%) final

Folie 40 PIONIC DEUTERIUM energy calibration strong interaction target material: GaAs by chance: tabulated energy also from GaAs  no chemical shift  D(3p-1s) 3 bar 10 bar 22 bar uncertainties  27 meV Ga K  2  10 meV statistics  8 meV pion mass  5 meV systematics  2 meV QED no molecule formation seen   1s =   (  1.3%) „same“ Bragg angle   1s  1s repulsive PhD thesis: Th. Strauch, Cologne 2009 Th. Strauch et al., Phys.Rev.Lett.104 (2010)142503; Eur. Phys.J A 47 (2011)88 Ga K  2 E QED

Folie 41  N isospin scattering lengths a + and a   PT: V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, and D. R. Phillips, Phys. Lett. B 694 (2011) 473 data:  H - R : D. Gotta et al., Lect. Notes Phys. 745 (208) 165 (preliminary)  D - R : Th. Strauch et al., Eur. Phys. J. A 47 (2011) 88 (final)  exp  2   theory - no LEC f 1 in NLO  exp <<  theory - LEC f 1 D. Gotta, IKP, FZ Jülich constistency a + > 0 !

Folie 42 PION PRODUCTION / ABSORPTION NN   NN

Folie 43  H scattering   p   0 n + n   D absorption   d  nn + nn  BR are well known from experiment HYDROGEN & DEUTERIUM - ORIGIN OF  1s „true“ absorption N  N radiative capture  N CEX scattering  N

Folie 44 NN   NN threshold parameter  charge symmetry detailed balance (T invariance)

Folie 45  production DD NN   NN threshold parameter  charge symmetry detailed balance extrapolation to threshold directly from  1s

Folie 46  production DD NN   NN threshold parameter  charge symmetry detailed balance extrapolation to threshold 3 keV directly from  1s Th. Strauch, PhD thesis, Cologne 2009 Th. Strauch et al., Phys.Rev.Lett.104 (2010) Th. Strauch et al., Eur.J.Phys.47 (2011)88  PT at present     30%  few % !? V. Lensky et al., Eur. Phys. J. A 27 (2006) 37  PT LO  PT NLO exotic-atom results IA rescattering

Folie 47 NUCLEON - ANTINUCLEON STRONG SPIN - SPIN and SPIN - ORBIT INTERACTION

Folie 48 d state strong interaction negligible p state s state  > 0 (<0)  attractive (repulsive) interaction meson exchange: strongly attractive isoscalar tensor interaction Richard, Sainio, Phys. Lett. B (1982)349 spin-orbit interaction spin-spin interaction   PROTONIUM - calculated HFS level scheme s- and p-state strong interaction effects

Folie 49 PROTONIUM - 1s ground state LEAR experiment PS207 M. Augsburger et al., Nucl. Phys. A 658 (1999) 149 D. Gotta et al., Nucl. Phys. A 660 (1999) 283 cyclotron trap + MOS CCD low statistics background resolution bound states ? most recent theo. paper: J. Carbonell, Nucl. Phys. A 692 (2001) 11 HFS splitting? PROTONIUM - EXPERIMENT

Folie s- and p-state strong interaction effects ground state weak signal spin average  1s =  250 eV  1s = 1100  750 eV M. Augsburger et al., Phys. Lett. B 461 (1999) 417 2p state HFS not resolvable spin average  2p =  26 meV  2p = 489  308 meV D. Gotta et al., Nucl. Phys. A 660 (1999) 283 ANTIPROTONIC DEUTERIUM

Folie 51 NUCLEON - ANTINUCLEON ANNIHILATION STRENGTH

Folie isotope effects spin average  / eV  / eV p 3 He 2p – 17  5 25  9 p 4 He 2p – 18  2 45  5 – – M. Schneider et al., Z. Phys. A 338 (1991) 217 single - nucleon annihilation ?  A(Z,N)  Z ·  p n + N ·  p p – – ANTIPROTONIC HELIUM LEAR experiment PS175

Folie 53 data: LEAR – PS201(OBELIX) discussion and references: K. Protasov et al., Eur. Phys. J. A 7 (2000) 429 atom scattering Trueman formula effective range fit Im a s   0.04 fm Im a p   0.07 fm striking agreement  atoms scattering  D: s = p  4 He: s = p  ATOM DATA  LOW-ENERGY SCATTERING

Folie 54 saturation ? seen also in optical potential analyses U opt  a  (r) A. Gal, E. Friedman and C.J. Batty, Phys. Lett. B491 (2000) 219 K. Protasov et al., Eur. Phys. J. A 7 (2001) 429 supplemantary data: PS176 qualitatively – strong annihilation suppresses wave function inside matter e. g.  1s < 0 for pp – ANNIHILATION STRENGTH  NUCLEAR MASS

Folie 55 RETROSPECT and OUTLOOK

Folie 56   C(2p-1s) NaI(Tl) inorganic scintillator Ge(Li) semiconductor detector First X-rays from pionic and antiprotonic atoms Rochester 1952CERN 1970 p 81 Tl  Prediction 1947 Fermi &Teller

Folie 57 first - LAMPFF 1983most recent - PSI 2005  700 events / 12 d  events / 20 d graphite 002  H(2p-1s) using a crystal spectrometer  H collaboration exp. R

Folie 58 first - LEAR 1996most recent - LEAR 1996  2000 events / 8 d pH(3d-2p) using a crystal spectrometer PS 207 collaboration = –

Folie 59 PIONIC HYDROGEN STORY X-rays identified   almost 40 years 

Folie 60 ANTIPROTONIC HYDROGEN STORY s-wave - -  - -  still a lot to do ! LEAR HYDROGEN HFS no unbiased analysis DEUTERIUM LEAR 1S01S0 1S01S0 3S13S1 3S13S1

Folie 61 THANK YOU