New Opportunities for Hadron Physics with the Planned PANDA Detector

Slides:



Advertisements
Similar presentations
Hadron Physics with Antiprotons – the PANDA Program Olaf N. Hartmann GSI Darmstadt, Germany INPC 2004 · Göteborg, Sweden.
Advertisements

Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Klaus Peters - GSI Future - Physics with Antiprotons
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Spectroscopy at the Particle Threshold H. Lenske 1.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
James Ritman Univ. Giessen Overview of the Proposed Antiproton Facility Antiproton production facility High Energy Storage Ring (HESR) Electron cooling.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Charmonium Spectroscopy: Missing or Unconfirmed States Diego Bettoni INFN – Sezione di Ferrara International Workshop on Physics with Antiprotons at GSI.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
Physics with open charm Andrey Sokolov IKP I FZ Jülich.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
Working Group 5 Summary David Christian Fermilab.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
HFT + TOF: Heavy Flavor Physics Yifei Zhang University of Science & Technology of China Lawrence Berkeley National Lab TOF Workshop, Hangzhou, April,
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
From Luigi DiLella, Summer Student Program
Klaus Peters Ruhr-Universität Bochum Yokohama, March 3, 2003 Charmed
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
 meson in nucleus at J-PARC Hiroaki Ohnishi RIKEN New Frontiers in QDC Exotic Hadron Systems and Dense Matter – Mini Symposium on Exotic hadrons.
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
H. Koch, QCD-N 06, June 2006 PANDA at the GSI  Introduction  The FAIR-Project and the PANDA-Detector  Physics Program of the PANDA-Collaboration – Hadron.
First Results of Curtis A. Meyer GlueX Spokesperson.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
New Perspectives for Physics with Antiprotons: the HESR-Project at GSI Volker Metag II. Physikalisches Institut Justus-Liebig-Universität Gießen, Germany.
M. Cobal, PIF 2003 Resonances - If cross section for muon pairs is plotted one find the 1/s dependence -In the hadronic final state this trend is broken.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
The Physics of high baryon densities Probing the QCD phase diagram The critical end point Properties of mesons in matter –Baryon density vs. temperature.
V. Mochalov (IHEP, Protvino) on behalf of the PANDA collaboration PANDA PHYSICS WITH THE USE OF ANTIPROTON BEAM.
J.RItman PANDA Collab. Meeting, May 2003 Status of the PANDA Simulations Event Generator UrQMD p A MVD Resolution Time of Flight Estimates of Data Rates.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
Dec 2002 Craig Ogilvie 1 Physics Goals of Si Vertex Detector  Physics priorities latter part of this decade –spin carried by gluons:  G vs x –modification.
Know How at LLR Ultra-granular calorimetry AFTER vs CHIC 1F. Fleuret - LLR11/05/ LPSC.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Introduction: Why is QCD so much fun? The Physics: Glue and Charm:
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
A heavy-ion experiment at the future facility at GSI
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Plans for nucleon structure studies at PANDA
Search for f-N Bound State in Jefferson Lab Hall-B
In-medium properties of the omega meson from a measurement of
how is the mass of the nucleon generated?
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Presentation transcript:

New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector Selected Simulation Results Charmonium: EM decays Charmonium: Open charm decays Charmonium in nuclear matter James Ritman Univ. Giessen

James Ritman Univ. Giessen What Do We Want To Know? Why don‘t we observe isolated quarks? Q-Q potential in the charmonium system Are there other forms of hadrons? e.g. Hybrids qqg or Glueballs gg Why are hadrons so much heavier than their constituents? p-A interactions James Ritman Univ. Giessen

Why Don’t We See Isolated Quarks? James Ritman Univ. Giessen

Charmonium – the Positronium of QCD Mass [MeV] Binding energy [meV] 4100 y ¢¢¢ (4040) Ionisationsenergie 3 P (~ 3940) 2 3900 D 3 1 S 3 3 (~ 3800) 3 S 3 1 D 3 3 D 3 P (~ 3880) 1 2 1 3 -1000 2 3 3 D 1 3 P (~ 3800) y ¢¢ (3770) 1 D 2 3 P 2 3 D 2 1 S 2 3 S 2 1 P 2 3 3 D 3 D 2 2 1 1 2 3 P 1 1 ~ 600 meV 3700 y ¢ (3686) Threshold 2 3 P 10-4 eV -3000 h ¢ c (3590) c (3556) h (3525) 2 c c (3510) 3500 1 c (3415) -5000 Charmonium ähnlicher Stellenwert wie Positronium bzw. Wasserstoffatom einfach (nicht-relativistisch) am besten verstanden 3300 1 3 S 1 1 S 1 8·10-4 eV -7000 y (3097) 3100 e + 0.1 nm e - h c (2980) C 1 fm C 2900 James Ritman Univ. Giessen

Why Antiprotons? e+e- annihilation via virtual photon: only states with Jpc = 1-- In pp annihilation all mesons can be formed Measured rate Beam Resonance cross section CM Energy Resolution of the mass and width is only limited by the beam momentum resolution James Ritman Univ. Giessen

James Ritman Univ. Giessen High Resolution Crystal Ball: typical resolution ~ 10 MeV Fermilab: 240 keV  p/p < 10-4 needed James Ritman Univ. Giessen

James Ritman Univ. Giessen Open Questions c (11S0) (Simu results) experimental error on M > 1 MeV G hard to understand in simple quark models c’ (21S0) Crystal Ball result way off study of hadronic decays hc(1P1) Spin dependence of QQ potential Compare to triplet P-States LQCD  NRQCD James Ritman Univ. Giessen

James Ritman Univ. Giessen Open Questions States above the DD threshold Higher vector states not confirmed Y(3S), Y(4S) Expected location of 1st radial excitation of P wave states Expected location of narrow D wave states Only Y(3770) seen Sensitive to long range Spin- dependent potential (Simu results) James Ritman Univ. Giessen

Why Are Hadrons So Heavy? James Ritman Univ. Giessen

Hadron Masses 2Mu + Md ~ 15 MeV/c2 Protons = (uud) ? Mp = 938 MeV/c2 no low mass hadrons (except p, K, h) spontaneously broken chiral symmetry (P.Kienle)

Hadron Production in the Nuclear Medium Mass of particles may change in dense matter  Quark atom d u d u _ D+ c d d u attractive d u _ d D- c d u repulsive d u James Ritman Univ. Giessen

J/Y Absorption in Nuclei J/Y absorption cross section in nuclear matter p + A  J/Y + (A-1) (Simu results)

Comparison of p-A Reactions to A-A Much lower momentum for heavy produced particles (2 GeV for “free”) (Effects are smaller at high momentum) Well defined nuclear environment (T and r) James Ritman Univ. Giessen

The Experimental Facility James Ritman Univ. Giessen

HESR

HESR: High Energy Storage Ring Beam Momentum 1.5 - 15 GeV/c High Intensity Mode: Luminosity 2x1032 cm-2s-1 (2x107Hz) dp/p (st. cooling) ~10-4 High Resolution Mode: Luminosity 2x1031 cm-2s-1 dp/p (e- cooling) ~10-5 James Ritman Univ. Giessen

James Ritman Univ. Giessen

James Ritman Univ. Giessen

Central Tracking Detectors MVD: (Si) 5 layers ~ 9 Mio pixels Andrei Sokolov HK39.5 Thursday 15:00 Straw-Tubes Mini-Drift-Chambers

James Ritman Univ. Giessen PID ToF Muon Detectors DIRC (DIRC@BaBar) James Ritman Univ. Giessen

James Ritman Univ. Giessen Open Charm pp DD DKpp „no background events added“ Mass Resolution ~ 10 MeV/c2 James Ritman Univ. Giessen

Vertex Distributions GEANT4 Transverse D meson signal DPM background signal DPM background Scale up by x10! 0.15 < Vz < 5 mm Longitudinal James Ritman Univ. Giessen

James Ritman Univ. Giessen DD Missing Mass signal DPM background N.B. different x scale | Mmiss 2|< 0.001 GeV2 (tight cut) James Ritman Univ. Giessen

James Ritman Univ. Giessen Open Charm As an example of the Pbar P  Y(3770)  DD Analysis Plot MDD – MD – MD + 2x1869MeV raw S/B ~ 10-7 James Ritman Univ. Giessen

Detection of Rare Neutral Channels As an example: hcgg Background: p0g, p0p0 hc:p0g:p0p0 1:50:500 Comparison with E835 (PLB 566,45) PANDA James Ritman Univ. Giessen

Dimuon Spectrum in p+Cu Beam momentum “on resonance” Full background simulations (result scaled up) Muons from J/Y have high Pt J/Y has low Pt (coplanar) J/Y James Ritman Univ. Giessen

James Ritman Univ. Giessen Summary GSI will explore the intensity frontier High luminosity cooled p from 1-15 GeV/c Wide physics program including Charmonium spectroscopy pbar-A reactions Search for glueballs and charm hybrids James Ritman Univ. Giessen

James Ritman Univ. Giessen

James Ritman Univ. Giessen In part supported by: GSI BMBF 06GI144 DFG James Ritman Univ. Giessen

James Ritman Univ. Giessen Target A fiber/wire target will be needed for D physics, A pellet target is conceived: 1016 atoms/cm2 for D=20-40 mm 1 mm James Ritman Univ. Giessen

Electromagnetic Calorimeter Detector material PbWO4 Photo sensors Avalanche Photo Diodes Crystal size  35 x 35 x 150 mm3 (i.e. 1.5 x 1.5 RM2 x 17 X0) Energy resolution 1.54 % / E[GeV] + 0.3 % Time resolution s  130 ps (N.B. with PMT!) Total number of crystals 7150 James Ritman Univ. Giessen

James Ritman Univ. Giessen Tracking Resolution Single track resolution Invariant mass resolution Example reaction: pp  J/y + F (s = 4.4 GeV/c2) J/y  m+m- F  K+K- s(J/y) = 35 MeV/c2 s(F) = 3.8 MeV/c2 James Ritman Univ. Giessen

James Ritman Univ. Giessen Staged Construction James Ritman Univ. Giessen

Pbar-Nucleus Interactions The interaction of charmed mesons with the baryonic environment strongly effects production rates near threshold James Ritman Univ. Giessen

Strange Baryons in Nuclear Fields Hypernuclei open a 3rd dimension (strangeness) in the nuclear chart Double-hypernuclei: very little data Baryon-baryon interactions: L-N only short ranged (no 1p exchange due to isospin) L-L impossible in scattering reactions K+K X- 3 GeV/c Trigger p _ X secondary target X-(dss) p(uud)  L(uds) L(uds)

James Ritman Univ. Giessen Charmonium Spectroscopy Probe large separations with highly excited qq states _ James Ritman Univ. Giessen

James Ritman Univ. Giessen The GSI Future Project Nuclear Structure: paths of nucleo-synthesis Heavy Ion Physics: hot and dense nuclear matter Ion and laser induced Plasma: very high energy densities Atomic physics: QED, strong EM fields, Ion-Matter interactions Physics with Antiprotons properties of the strong force Project approved Feb 2003 James Ritman Univ. Giessen

James Ritman Univ. Giessen Open Questions The c(11S0) The c(21S0) The hc(1P1) States above the DD threshold James Ritman Univ. Giessen

Proton Form Factors at large Q2 At high values of momentum transfer |Q2| the system should be describable by perturbative QCD. Due to dimensional scaling, the FF should vary as Q4. The time like FF remains about a factor 2 above the space like. These differences should vanish in pQCD, thus the asymptotic behavior has not yet been reached at these large values of |q2|. (HESR up to s ~ 25 GeV2) q2>0 q2<0 James Ritman Univ. Giessen

Mixing With Mesonic States Width: could be narrow (5-50 MeV) since DD suppressed for some states O+-  DD,D*D*,DsDs (CP-Inv.) (QQg)  (Qq)L=0+(Qq)L=0 (Dynamic Selection Rule) If DD forbidden, then the preferred decay is (ccg)  (cc) + X , e.g. 1-+  c + h James Ritman Univ. Giessen

Spontaneous Breaking of Chiral Symmetry Although the QCD Lagrangian is symmetric, the ground state need not be. (e.g. Fe below TCurie ) Example:

James Ritman Univ. Giessen Exotic Hadrons James Ritman Univ. Giessen

James Ritman Univ. Giessen Glueballs C. Morningstar PRD60, 034509 (1999) Self interaction between gluons  Construction of color-neutral hadrons with gluons possible exotic glueballs don‘t mix with mesons (qq) 0--, 0+-, 1-+, 2+-, 3-+,... g 1GeV=32pt James Ritman Univ. Giessen

James Ritman Univ. Giessen Charm Hybrids ccg Prediction in QCD: Collective gluon excitation (Gluons contribute to quantum numbers) Ground state: JPC = 1-+ (spin exotic) distance between quarks James Ritman Univ. Giessen

James Ritman Univ. Giessen Partial Wave Analysis Partial wave analysis as important tool Example of 1-+ (CB@LEAR) pd  X(1-+)+p+p, X  h p Strength ~ qq States ! Signal in production but not in formation is interesting ! James Ritman Univ. Giessen

James Ritman Univ. Giessen Quark Condensate The QCD vacuum is not empty Hadron masses are generated by the strong interaction with <qq> (also with gluon condensate) The density of the quark condensate will change as a function of temperature and density in nuclei. This should lead to modifications of the hadron’s spectral properties. James Ritman Univ. Giessen

Hadrons in the Nuclear Medium Reduction of <qq> Spectral functions <qq> S.Klimt et al., Nucl. Phys. A515, 429 (1990). W.Peters et al., Nucl. Phys. A632, 109 (1998).

Deeply Bound Pionic Atoms Pionic capture is possible with the appropriate choice of kinematics: d+n  3He + p- These results indicate a mass shift of ~25 MeV for pions at normal nuclear matter density. James Ritman Univ. Giessen

Kaons in Nuclear Matter Kaon and anti-kaon masses should no longer be degenerate in nuclear matter. Expected signal: increased K- production compared to K+. J.Schaffner-Bielich et al., Nucl. Phys. A (1997) 325. James Ritman Univ. Giessen

Measured K- Cross Section Comparison of proton-proton data with heavy ion data[2]: dramatic enhancement of the K- production probability KaoS [1] A.Sibirtsev et al., Z.Phys. A358 (1997) 101. [2] F.Laue et al., Phys.Rev. Lett. 82 (1999) 1640. [3] C.Quentmeier et al., Phys Lett B 515 (2001) 276. James Ritman Univ. Giessen

James Ritman Univ. Giessen Open Charm in Nuclei The interaction of charmed mesons with the baryonic environment strongly effects production rates near threshold James Ritman Univ. Giessen

cc Production in Nuclear Matter The mass of charmonium states is not expected to change much. However, a drop of the DD mass leads to a widening of the cc states. Y’ will have too high momentum, most decay outside.  but wider tails James Ritman Univ. Giessen

James Ritman Univ. Giessen Charmonium in Nuclei Due to the increased width, the dileptons from charmonium states below the free DD threshold are strongly suppressed. Golubeva et al. Eur.Phys.J. A17 (2003) 275-284 James Ritman Univ. Giessen