Curved Mirrors.

Slides:



Advertisements
Similar presentations
Learning Outcome Draw a ray diagram to find the position, nature and size of the image produced by a concave and convex mirrors.
Advertisements

PHYSICS InClass by SSL Technologies with S. Lancione Exercise-48
Chapter 13 Preview Objectives Electromagnetic Waves
Section 3 Curved Mirrors
TOC 1 Physics 212 and 222 Reflection and Mirrors What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
→ ℎ
Chapter 31 Images.
14-3: Curved Mirrors.
Chapter 34: Mirrors 1 We will consider three varieties of mirrors Spherical Concave Mirror Plane Mirror Spherical Convex Mirror Photos from Fishbane,
Chapter 13 Light and Reflection Hr Physics. Sound and Light They share several characteristics: They can be described as waves. They use the same v= formula.
Chapter 13: Section 3. Learning Targets Describe the difference between a real and a virtual image Draw ray diagrams for objects located at various distances.
Chapter 23 Mirrors and Lenses. Medical Physics General Physics Mirrors Sections 1–3.
Mirrors Law of Reflection The angle of incidence with respect to the normal is equal to the angle of reflection.
Chapter 23 Mirrors and Lenses.
Curved Mirrors Chapter 14 Section 3.
Reflection from Curved Mirrors. 2 Curved mirrors The centre of the mirror is called the pole. A line at right angles to this is called the principal axis.
Curved Mirrors.
Curved Mirrors Chapter 13 Section 3. Mirror Terminology  Ccenter of curvature  Rradius of curvature.
air water As light reaches the boundary between two media,
Chapter 23 Mirrors and Lenses.
Ch. 18 Mirrors and Lenses Milbank High School. Sec Mirrors Objectives –Explain how concave, convex, and plane mirrors form images. –Locate images.
Mirrors Physics 202 Professor Lee Carkner Lecture 22.
Chapter 36 Image Formation Dr. Jie Zou PHY 1371.
Chapter 23 Mirrors and Lenses.
Physics Mechanics Fluid Motion Heat Sound Electricity Magnetism Light.
Curved Mirrors and Ray Diagrams SNC2D. Concave Mirrors A concave mirror is a curved mirror with the reflecting surface on the inside of the curve. The.
Curved Mirrors Sections 11.5 & 11.6.
Formation of Images by Spherical Mirrors
Curved Mirrors Curved mirrors are like plane mirrors
Geometrical Optics (Lecture II)
Ch. 14 Light and Reflection. Flat Mirrors Simplest mirror Object’s image appears behind the mirror Object’s distance from the mirror is represented as.
Spherical Mirrors Spherical mirror – a section of a sphere of radius R and with a center of curvature C R C Mirror.
Textbook sections 26-3 & 26-4 Physics 1161: Lecture 21 Curved Mirrors.
Lecture 14 Mirrors Chapter 23.1  23.3 Outline Flat Mirrors Spherical Concave Mirrors Spherical Convex Mirrors.
Mirrors and Lenses.
1 Reflection and Mirrors. 2 The Law of Reflection “ The angle of incidence equals the angle of reflection.”
Chapter 14 Light and Reflection
Image Formation. We will use geometrical optics: light propagates in straight lines until its direction is changed by reflection or refraction. When we.
Spherical Mirrors Alfano I: Year 4.
Ray Diagrams for spherical mirrors. Finding the focal point Center of Curvature (C)- if the mirror actually was a sphere, this is the center of that sphere.
Chapter 23 Mirrors and Lenses. Types of Images for Mirrors and Lenses A real image is one in which light actually passes through the image point A real.
Curved Mirrors: Locating Images in Concave & Convex Mirrors.
Reflection Regular reflection occurs when parallel light rays strike a smooth surface and reflect in the same direction. Diffuse reflection occurs when.
1 2 Curved mirrors have the capability to create images that are larger or smaller than the object placed in front of them. They can also create images.
3/4/ PHYS 1442 – Section 004 Lecture #18 Monday March 31, 2014 Dr. Andrew Brandt Chapter 23 Optics The Ray Model of Light Reflection; Image Formed.
Light and Reflection Curved Mirrors. Concave Spherical Mirrors Concave spherical mirror – an inwardly curved, spherical mirrored surface that is a portion.
Properties of Reflective Waves Curved Mirrors. Image close to a concave mirror appear:
Curved Mirrors Chapter 14, Section 3 Pg
25.4: Spherical Mirrors. Concave Mirror Light rays near and parallel to the principal axis are reflected from a concave mirror and converge at the focal.
Plane Mirror: a mirror with a flat surface
Reflection & Mirrors. Reflection The turning back of an electromagnetic wave (light ray) at the surface of a substance. The turning back of an electromagnetic.
Reflection of Light. Reflectance u Light passing through transparent medium is transmitted, absorbed, or scattered u When striking a media boundary, light.
Mirrors. Mirrors and Images (p 276) Light travels in straight lines, this is the reason shadows and images are produced (p 277) Real images are images.
Unit 8 – Curved Mirrors. Unit 8 – Concave Spherical Mirror Concave spherical mirror: a mirror whose reflecting surface is a segment of the inside of a.
Reflection Regular reflection occurs when parallel light rays strike a smooth surface and reflect in the same direction. Diffuse reflection occurs when.
Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance.
Reflection Regular reflection occurs when parallel light rays strike a smooth surface and reflect in the same direction. Diffuse reflection occurs when.
Curved Mirrors. Images in Mirrors S ize, A ttitude, L ocation, T ype Size –Is the image bigger, smaller or the same size as the object? Attitude –Is the.
A light beam striking a boundary between two media can be partly transmitted and partly reflected at the boundary.
Mirrors.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
1 Reflection and Mirrors Chapter The Law of Reflection When light strikes a surface it is reflected. The light ray striking the surface is called.
Curved Mirrors
Free-Response-Questions
Millions of light rays reflect from objects and enter our eyes – that’s how we see them! When we study the formation of images, we will isolate just a.
Millions of light rays reflect from objects and enter our eyes – that’s how we see them! When we study the formation of images, we will isolate just a.
Light and Reflection Curved Mirrors.
Chapter 13 Light and Reflection
Mirrors Reflection of Light.
Presentation transcript:

Curved Mirrors

Concave Mirrors Mirrors that are a small portion of the inside of a sphere The angle of incidence still equals the angle of reflection. Called converging mirrors The focal length (f) is one-half the radius (R).

Concave Mirrors The image shown is real because the reflected rays actually pass through each other. Virtual images only appear to come from a single point. Object distance (p) Image distance (q) Object height (h) Image height (h’)

Ray Tracing for a Concave Spherical Mirror Click below to watch the Visual Concept. Visual Concept

Concave Spherical Mirrors 4/16/2017 2:56 AM Concave Spherical Mirrors Image close to a concave mirror appear: Larger than the object Upright © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Concave Spherical Mirrors 4/16/2017 2:56 AM Concave Spherical Mirrors Image far from a concave mirror appear: Smaller than the object Inverted or upside down © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Concave Spherical Mirrors 4/16/2017 2:56 AM Concave Spherical Mirrors Another factor that influence image appearance is: Curvature R = radius of curvature or/ radius of the spherical mirror C = center of curvature of the mirror © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Concave Spherical Mirrors 4/16/2017 2:56 AM Concave Spherical Mirrors Image location can be found using the mirror equation: (1/p) + (1/q) = (2/r) © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Concave Spherical Mirrors 4/16/2017 2:56 AM Concave Spherical Mirrors Two kinds of images Real- images that form in front of the mirror Virtual- images that form behind the mirror © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Concave Spherical Mirrors 4/16/2017 2:56 AM Concave Spherical Mirrors Another factor that influence image appearance is: Curvature R = radius of curvature or/ radius of the spherical mirror C = center of curvature of the mirror © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Concave Spherical Mirrors 4/16/2017 2:56 AM Concave Spherical Mirrors The FOCAL POINT (F) is half way between the center of curvature and the mirrors surface The distance to the focal point is the focal length (f) (1/p) + (1/q) = (1/f) © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Rules of the Mirror Equation 4/16/2017 2:56 AM Rules of the Mirror Equation Real images form on the front side of the mirror Virtual images form on the back side of the mirror The mirror is drawn so the front side is on the left © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Rules of the Mirror Equation 4/16/2017 2:56 AM Rules of the Mirror Equation Positive numbers indicate the front side of the mirror Negative numbers indicate the back side of the mirror The principal axis runs through the center of the mirror © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Rules of the Mirror Equation 4/16/2017 2:56 AM Rules of the Mirror Equation Positive numbers are above the principal axis Negative numbers are below the principal axis © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Mirror Equation h is positive if it is upright and negative when inverted. M is positive for virtual (upright) images.

Magnification M is positive means the image is upright 4/16/2017 2:56 AM Magnification M is positive means the image is upright M is negative means the image is inverted © 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Concave Mirrors These rules describe three rays that are easily drawn without the need to measure angles. Others can be drawn after the image point is located using at least two of these rays.

Concave Mirrors Is the image real or virtual? Inverted or upright? Larger than or smaller than or equal to the object in size?

Concave Mirrors Is the image real or virtual? Inverted or upright? Larger than or smaller than or equal to the object in size?

Concave Mirrors Is the image real or virtual? Inverted or upright? Larger than or smaller than or equal to the object in size?

Concave Mirrors Is the image real or virtual? Inverted or upright? Larger than or smaller than or equal to the object in size?

Convex Mirrors Called a diverging mirror because rays are spread out by the mirror Image is always virtual and smaller than the object.

Convex Mirrors Used as side-view mirrors on cars What warning is written on these mirrors? Why? Images are small so they appear to be farther away. Also used in stores to monitor shoppers Equations are the same as those for concave mirrors.

Ray Tracing for a Convex Spherical Mirror Click below to watch the Visual Concept. Visual Concept

Practice Problem A concave makeup mirror is designed so that a person 25.0 cm in front of it sees an upright image at a distance of 50.0 cm behind the mirror. What is the radius of curvature of the mirror? What is the magnification of the mirror? Is the image real or virtual?

Practice Problem A concave shaving mirror has a focal length of 33 cm. Calculate the position of a cologne bottle placed in front of the mirror at a distance of 93 cm. Calculate the magnification of the image. Is the image upright or inverted? Is the image real or virtual? Draw a ray diagram.

Practice Problem A pen in placed 11.0 cm from a concave mirror produces a real image of 13.2 cm from the mirror. What is the focal length of the mirror? Calculate the magnification of the image. If the pen is placed 27.0 cm from the mirror, what is the new position of the image? What is the magnification of the new image? Is the image upright or inverted? Is the image real or virtual? Draw a ray diagram.

Practice Problem A convex mirror with a radius of curvature of 0.550m is placed above the aisle in a store. Determine the image distance and magnification of a customer lying on the floor 3.1m below the mirror. Is the image virtual or real? Is the image inverted or upright?

Practice Problem A spherical glass ornament is 6.00 cm in diameter. If an object is placed 10.5 cm from the ornament, where will its image form? What is the magnification? Is the image virtual or real? Is the image inverted or upright? Draw a diagram.

Practice Problem What is the image distance for an automobile 5.5m in front of a convex mirror with a 0.25m focal length? What is the magnification? Is the image virtual or real? Is the image inverted or upright? Draw a diagram.

Practice Problem A soda bottle is placed 44cm from a convex mirror. If the mirror’s focal length is 33 cm, how far from the mirror’s surfaced does the bottle’s image form? What is the magnification? Is the image virtual or real? Is the image inverted or upright? Draw a diagram.

Parabolic Mirrors With spherical mirrors, rays not near the principal axis do not all meet at the image point. Parabolic mirrors eliminate this problem and produce sharper images.

Parabolic Mirrors & Spherical Aberration Using rays near the axis on spherical mirrors reduces the aberration or blurriness of the image. A very small section of a sphere is nearly identical to a paraboloid. Parabolic mirrors are used in telescopes to sharpen the image.

Reflecting Telescope Click below to watch the Visual Concept.