MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発

Slides:



Advertisements
Similar presentations
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
Advertisements

MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
東京大学におけるMSGCの開発 東京大学 二河久子 藤田薫、高田夕佳、高橋浩之 2007/01/27 佐賀大学.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
Silicon Photomultiplier Readout Electronics for the GlueX Tagger Microscope Hall D Electronics Meeting, Newport News, Oct , 2007 Richard Jones, Igor.
Studies of Small Scintillating Cells with Modified Geometries Alexander Dyshkant for NICADD at NIU.
Mass test of MPPC with a prototype of MEG II liquid xenon detector
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
GLD Calorimeter Status Oct 学術創成会議 S. Uozumi Shinshu University FJPPL meeting held at the end of September. Preparation underway toward the ECAL.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
Montpellier, November 15, 2003 J. Cvach, TileHCAL and APD readout1 TileHCAL- fibre readout by APD APDs and preamplifiers Energy scan with DESY beam –Energy.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK)
PANDA Anton A. Izotov, Gatchina A.A.Izotov, Gatchina, PANDA Forward TOF Walls. Side TOF walls in dipole Magnet SiPM/PMT187.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
MEG II 実験のための SiPM を用いた 陽電子タイミングカウンターのシミュレーションによる性能評価 Development of the waveform simulation for Positron Timing Counter with SiPM for MEG II Experiment.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 4. Summary 神戸大学.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
1 SiPM studies: Highlighting current equipment and immediate plans Lee BLM Quasar working group.
1/10/2016Collaboration Meeting Feb 2011 Start Counter 1 Start Counter Update W. U. Boeglin L. Guo E. Pooser Measurements on EJ-212 scintillator bars Attenuation.
Gain stability and the LYSO beam radiation monitor measurements
December 5, 2007 P. Colas - LP cosmic trigger 1 The cosmic trigger for the Large Prototype Th. Chaminade, P. Colas, K. Dehmelt, G. De Lentdecker, X. Janssen,
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Status of the PSD upgrade - Status of the PSD cooling and temperature stabilization system - MAPD gain monitoring system - PSD readout upgrade F.Guber,
Comparison of 3 types of scintillator strips Miho NISHIYAMA Shinshu-U Light yield of 3 scintillator strips have been measured using b-ray source. 1. fiber.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
GSI 9Feb09 NMI3 – Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy, Joint Research Activity (JRA8): MUON-S. Contract:
SiPM Workshop EU-FP7(HP3), Vienna, 16 Feb F.G. H.O. Study of scintillator detectors time resolution with different SiPM readout on T10 test beam.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Study of the Radiation Damage of Hamamatsu Silicon Photo Multipliers Wander Baldini Istituto Nazionale di Fisica Nucleare and Universita’ degli Studi di.
1 The Scintillation Tile Hodoscope (SciTil) ● Motivation ● Event timing/ event building/ software trigger ● Conversion detection ● Charged particle TOF.
マイクロメッシュを用いた 三次元電場構造型μ-PICの開発
Prospect of SiPM application to TOF in PANDA
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Performance of LYSO and CeBr3 crystals readout by SiPM
Results achieved so far to improve the RPC rate capability
FINAL YEAR PROJECT 4SSCZ
Development of a High Precision Axial 3-D PET for Brain Imaging
大強度
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発 西村美紀 (東大ICEPP) 松本悟、宮崎陽平(九大) 他 MEGコラボレーション 日本物理学会 2012年秋季大会 京都産業大学

outline Introduction Pixelated timing counter Single pixel study MEG Upgrade Pixelated timing counter Concept and expected performance Single pixel study Test with smaller counter Construction and test of prototype of single pixel Summary and Prospects

μ → eγ Search for charged lepton flavor violation (cLFV), μ → eγ SUSY-Seesaw Search for charged lepton flavor violation (cLFV), μ → eγ Forbidden in the SM Some models predict large branching ratios Event Signature 𝑒 + : 52.8 MeV Gamma-ray : 52.8 MeV Time coincidence Back-to-back Background 𝜇 + → 𝑒 + ν 𝑒 ν 𝜇 𝛾 Accidental background by Michel positron and gamma-ray ->dominant Requirement high intensity DC 𝜇 + beam high rate tolerable positron detector high performance gamma-ray detector the upper limit of 2.4× 10 −12 S.Antusch et al, JHEP 0611:090 (2006) SUSY-GUT SO(10) L.Calibbi et al, JHEP 0912:057 (2009)

MEG Most stringent upper limit of 2.4× 10 −12 in summer 2011 μ beam at PSI (Paul Scherrer Institute) -> a muon stopping rate of 3× 10 7 Hz 900L LXe gamma detector Positron spectrometer COBRA Gradient magnetic field -> sweep the positron out of the detector quickly the same momentum -> the same radius Drift chamber Momentum, decay vertex, emission angle and track length Timing counter Impact time Most stringent upper limit of 2.4× 10 −12 in summer 2011 Sensitivity goal -> ~6.0× 10 −13 in 2013

Upgrade sensitivity goal -> 5× 10 −14 μ beam Xenon Calorimeter Improve detection efficiency Improve resolutions -> Background reduction μ beam a higher beam intensity Xenon Calorimeter Smaller photo-sensor Positron spectrometer Positron tracker efficiency ->minimize material along the positrons path to the timing counter Resolution ->increase measurement points Stereo wire drift chamber Time projection chamber (TPC) Timing counter Pixelated Timing Counter present upgrade Positron Tracker 2 option Timing counter

Pixelated Timing Counter Scintillator ×2 (upstream, downstream side) 90cm 30cm PMT ~400 pixels upgrade present Composed of several hundreds of small scintillator plates with MPPC readout A good timing resolution of single pixel -> already proved by the μSR group at PSI Using multiple hit time Less pileup Additional track information Insensitivity to magnetic field Operational in helium gas (with which COBRA is filled) Flexible detector layout 60 5 30 (still to be optimized) Ultra-fast Plastic Scintillator -> Readout by waveform digitizer (DRS developed at PSI)

⇒ the average time resolution : Expected Performance Single pixel counter μSR counter (12x25x5, BC422: attenuation length~8cm, rise time 0.35ns) 𝜎 𝑠𝑖𝑛𝑔𝑙𝑒 = 23𝑝𝑠 𝑘𝐸[𝑀𝑒𝑉] (measured) (𝑘= photon-sensor coverage) MEG design (30x60x5, BC418: attenuation length ~100cm, rise time 0.5ns) 𝜎 𝑠𝑖𝑛𝑔𝑙𝑒 = 19𝑝𝑠 𝑘𝐸[𝑀𝑒𝑉] (MC) (->45ps) Multiple hit 𝜎 2 𝑡𝑜𝑡𝑎𝑙 𝑁 ℎ𝑖𝑡 = 𝜎 2 𝑠𝑖𝑛𝑔𝑙𝑒 𝑁 ℎ𝑖𝑡 + 𝜎 2 𝑖𝑛𝑡𝑒𝑟−𝑝𝑖𝑥𝑒𝑙 𝑁 ℎ𝑖𝑡 + 𝜎 2 𝑀𝑆 𝑁 ℎ𝑖𝑡 ⇒ the average time resolution : 30-35 ps (60% ↓) 𝑡 𝑒𝛾 resolution 𝝈 𝒆𝜸 = 130 ps → 80 ps (40% ↓) track length: 75 ps→ 11 ps gamma side: 67 ps Timing counter: 76ps → 30-35ps # of hit counter (MC) # of hit counter dependence (current TC ~76ps)

Issues Prove the performance for our application Larger single counter Readout system (cabling, electronics…) Multiple hit principle Other Possible Issues Temperature coefficient of MPPC gain The number of electronics channels (~ 800 pixels × 2 readout) and MPPCs (~ 800 pixels × 6) Radiation hardness of MPPC Today’s topic Test with smaller counter (working at PSI μSR facility) Basic performance measurement Test of waveform digitizer readout Effect of parallel connection Construction and test of prototype of single pixel

Single pixel counter study

Set up Test counter from μSR group Reference counter (≒BC422) 2 MPPCs Series connection Test counter from μSR group Reference counter 5×5×5 mm Readout by a MPPC -> collimate β-ray, scan position trigger Source Sr90 (~2MeV,β-ray) Bias 140V~144V (~5.0μA) Voltage preamp developed by PSI Waveform digitizer sampling (DRS developed at PSI) sampling rate -> 5GHz A. Stoykov et al. NDIP 2011 Test counter Reference counter HV source HV source HV source HV source KEITHLEY 6487 PICOAMMETER/VOLTAGE SOURCE Hamamatsu Photonics MPPC S10362-33-050C

analysis Timing measurement: average from both sides 𝑡 0 − 𝑡 1 2 𝑡 0 − 𝑡 1 2 𝑡 0 + 𝑡 1 2 − 𝑡 𝑟𝑒𝑓 Digital Constant Fraction -> 8%, delay 2ns Correction by the ratio each side charge log( 𝑄 1 𝑄 0 ) and the reference charge 1/ 𝑄 𝑟𝑒𝑓 raw 𝑡 0 𝑄 0 𝑡 1 𝑄 1 CF

Intrinsic Resolution 𝜎 (𝑘∙𝐸) 0.5 =15 ps∙ MeV 0.5 (𝑘=0.3) With waveform digitizer, the good timing resolution is obtained. Timing resolution scales as square root of Npe 𝜎 𝑡𝑜𝑡 = 𝜎 𝐸 2 1 𝐸 + 𝜎 𝑜𝑓𝑓𝑠𝑒𝑡 2 𝜎 𝑜𝑓𝑓𝑠𝑒𝑡 =11ps (measured) μSR group (TDC) → 𝜎 (𝑘∙𝐸) 0.5 =23 ps∙ MeV 0.5 (12x25x5mm EJ232 uniform irradiated) 𝜎 (𝑘∙𝐸) 0.5 =17 ps∙ MeV 0.5 (smaller counter φ6x0.3mm EJ232)

MPPC bias dependence ~100ps/V 44ps 𝒕 𝟎 + 𝒕 𝟏 𝟐 − 𝒕 𝒓𝒆𝒇     𝑡 0 + 𝑡 1 2 − 𝑡 𝑟𝑒𝑓     𝑡 0 − 𝑡 1 2   Good resolution can be obtained stably over certain voltage. Shift of the timing depending on bias voltage (-> temperature variation could affect the timing  performance)

Temperature stability The temperature coefficient of the breakdown voltage: 56mV/℃ -> gain variation: 5.6 %/℃ at overvoltage of 1V (Hamamatsu MPPC S10931-050P) In the COBRA, temperature changes 2-3℃ -> ~150mV -> ~15ps Possible solutions Improve temperature control of detector hut SiPM with smaller temperature coefficient ->KETEK SiPM (PM3350) gain variation: <1 %/℃ PhotoDet 2012, June 13-15, 2012, LAL Orsay, France

Parallel connection connect outputs in parallel from two pixels located apart from each other (Low pile up makes it possible.) Channel reduction Issues Can not give bias voltage each counter ->Choose pairs of the same breakdown voltage Capacitance ↑ ->Change waveform, smaller signal Though resolution becomes worse because of wave height decrease, it does NOT change under higher over voltage.

Pixel prototype 30×60×4.5 mm scintillator Two types of scintillators BC422: attenuation length 8cm rise time 0.35ns EJ228: attenuation length 100cm rise time 0.5ns 3 MPPCs each side MPPC: 3×3mm, 50μm pixel pitch No wrapping (only total reflection) Optical coupling with optical grease (OKEN6262A) Expected performance BC422 50.1 EJ228 44.7 60 4.5 30 Ultra-fast Plastic Scintillator Design of the single pixel module Three MPPCs on the PCB Prototype counter

First test with prototype 1cm counter 53.3 ps (expected 50.1) 25ps BC422 Moving-average 3 points, digital Constant-fraction at 8% fraction Average 53.4 ps EJ228 Moving-average 3 points, ARC Constant-fraction with 3.5 ns delay and 8% fraction 54.8ps (expected 44.7) Average 55.4 ps 40ps Resolution doesn’t change so much. Mean has a little position dependence . Measured resolution is worse than expected one. -> We couldn’t apply proper bias voltage to MPPC for some reasons. reflector still to be optimized Overall positron time resolution is a little worsened. 33ps -> 37ps (EJ228)

Summary and Prospects summary prospects Pixelated timing counter with an improved timing resolution is under development for MEG upgrade. Basic properties of single pixel were measured with smaller counter. Good resolution confirmed Bias dependence and effect of temperature variation are studied. -> temperature control might be necessary. Effect of parallel connection is small. Construction and test of single pixel prototype is started. Though it have not been optimized yet, reasonable resolution is already achieved. prospects Solve the problem that proper gain cannot be applied. Optimize the single pixel performance (reflector, size) Optimize the layout Construct the prototype detector with several tens of pixels Beam test Prove multiple hit scheme

Thank you

Back up

Cost Cost estimate for the new pixelated timing counter

Time Schedule

Radial hardness Results from the irradiation tests of Hamamatsu MPPC (S10362-33-050C) performed by the PSI SR group. Significant increase of dark current (top) and 15% gain degrease (middle) are observed, while the timing resolution is unchanged (bottom). Courtesy of Dr. A. Stoykov of Paul Scherrer Institut.

Charge -> Energy → 𝐸=4.6∙𝑄 A. Stoykov et al. NDIP 2011 Match the charge peak with energy peak(use μSR group’s result) → 𝐸=4.6∙𝑄

I-V curve single ↑Parallel connection Break down voltage

Reference charge dependence

Single VS parallel(Q/A)

Electric noise The one side of counter signal is divided two and connected DRS’s two channels respectively.

Position reconstruction 𝑡 0 𝑄 0 𝑡 1 𝑄 1 𝑄∝ 𝑁 0 𝑒 − 𝐿±𝑥 𝝀 𝑥 𝑥=0.5×𝝀log 𝑄 1 𝑄 0 -> attenuation length 𝑥=𝑣× 𝑡 1 − 𝑡 0 2 -> scintillation light speed BC422 EJ228 ↓ Since attenuation length is long, position reconstruction by charge does not work. Resolution ~14.5 mm BC422 EJ228 => Using time difference is better for position reconstruction. Resolution ~7-9 mm

Position dependence (lsc)

Position dependence(μSR) Slight position dependence in resolution: ~ a few ps Position dependent time bias: ~40ps

Properties of ultra-fast plastic scintillators from Saint-Gobain

New Tracker candidates

EJ228(100cm) プロット->どのくらい?

BC422(8cm)