Angle-domain parameters computed via weighted slant-stack Claudio GuerraSEP-131
Motivation Post migration processes in the reflection-angle domain –migration-velocity analysis –residual multiple attenuation –AVA –regularization of the least-squares inverse imaging Compensate for illumination problems in ADCIGs
Outline Introduction Weighted OFF2ANG Results Conclusions
Introduction SEP125 - Valenciano and Biondi –Compute the Hessian in the angle domain by chaining operators T *, H and T. S(m) = ½||Lm h – d obs || 2 = ½||LTm – d obs || 2 2 S(m)/ m 2 = T * L * LT H(x, ; x ’, ’ ) = T * ( ,h) H ( x, h ; x ’, h ’ ) T( ,h) H(x, ; x ’, ’ ) – angle-domain Hessian H ( x, h ; x ’, h ’) – offset-domain Hessian m – ADCIGm h – SODCIG T( ,h) – angle-to-offset transformation T * ( ,h) – offset-to-angle transformation L – modeling operatorL * - migration
angle Introduction SEP125 - Valenciano and Biondi –“The Hessian... in the angle dimension lacks of resolution to be able to interpret which angles get more illumination.” offset depth offset angle depth
Weighted OFF2ANG Assymptotic approximation of Kirchhoff Migration –Main contribution comes from the vicinity of the stationary point Bleistein(1987) and Tygel et.al(1993) –migration with two different weights –division of the migrated images t z M(x,z) x – * N( *,t)
Weighted OFF2ANG – phase behavior Slant – stack Q – ADCIGP – SODCIG – stacking line f (z) – wavelet z r – reflector A – amplitude h – subsurface offset – reflection angle – rho filter
Weighted OFF2ANG – phase behavior Slant – stack Q – ADCIG – phase function f (z) – wavelet A – amplitude h * – stationary offset – reflection angle
Weighted OFF2ANG Weighted Slant – stack – ADCIG – phase function f (z) – wavelet A – amplitude h * – stationary offset – reflection angle
Results Sigsbee2b depth cmp
Results – Input data offset depth offset SODCIGDiagonal of the Hessian
Results –ADCIGs angle angle angle depth angle angle angle depth angle angle angle Main diagonal
Results – Angle sections 15 o 30 o 40 o depth cmp depth cmp depth cmp depth cmp depth cmp depth cmp Main diagonal
Results – Amplitude correction angle angle angle depth angle angle angle depth Main diagonal
Results – Amplitude correction 15 º angle section depth cmp depth cmp 30 º angle section depth cmp 45 º angle section Main diagonal
Results – Amplitude correction depth cmp Angle stack
Main diagonal5 th off-diagonal Results – 0 o Off-diagonals depth cmp 15 th off-diagonal
Main diagonal5 th off-diagonal Results – 15º Off-diagonals depth cmp 15 th off-diagonal
Conclusions Alternative approach to transform the Hessian to the angle domain Well balanced ADCIGs –Better angle-stack Off-diagonal terms –Still no direct application