Module on Computational Astrophysics Jim Stone Department of Astrophysical Sciences 125 Peyton Hall : ph : Lecture 1: Introduction to astrophysics, mathematics, and methods Lecture 2: Optimization, parallelization, modern methods Lecture 3: Particle-mesh methods Lecture 4: Particle-based hydro methods, future directions
Computational Tasks 1.Setup distribution of N particles 2.Compute forces between particles 3.Evolve positions using ODE solver 4.Display/analyze results
Leap-frog scheme Define positions (x) and forces (F) at time level n velocities (v) at time level n+1/2 Then, for i th particle n-1 n-1/2 n n+1/2 n+1 time x, F v x, F v x, F To start integration, need initial x and V at two separate time levels. Specify x 0 and v 0 and then integrate V to t/2 using high-order scheme
Accuracy of leap-frog scheme Can show the truncation error in leap-frog is second order in t Evolution eqns: Replace V n-1/2 in second equation using first Substitute this back into first equation Rearrange This is central difference formula for F=ma.
Let X(t) be the “true” (analytic) solution. Then Use a Taylor expansion to compute X n+1 and X n-1 Substitute these back into eq. 1 EQ. 1 Thus Truncation error O( t 2 )
Truncation versus round-off error Note the error we have just derived is truncation error Unavoidable result of approximating solution to some order in x or t Completely unrelated to round-off error, which results from representing the continuous set of real numbers with a finite number of bits. Truncation error can be reduced by using smaller step t, or higher- order algorithm Round-off error can be reduced by using higher precision (64 bit rather than 32, etc.), and by ordering operations carefully. In general, truncation error is much larger than round-off error
Stability of leap-frog scheme Easiest to illustrate with an example. Suppose the force is given by a harmonic oscillator, that is: Then “true” (analytic) solution is Substitute force law into leap-frog FDE for F=ma Look for oscillatory solutions of the form x = x 0 e i t giving
This is good! Leap-frog (correctly) gets oscillatory solutions, but at a modified frequency Note this gives correct solution ( as t --> 0 For t > 2, frequency becomes complex. Real part of ’ gives oscillatory solution, imaginary part gives exponentially growing (unstable) solution. So stability limit is t < 2/ or t < 2/[(dF/dx)/m] 1/2 in general Above is a simple example of a von-Neumann stability analysis
Consistency of leap-frog scheme Leap-frog is consistent in the sense that as t --> 0, the difference equations converge to the differential equations Leap-frog is also a symplectic method (time symmetric). Scheme has same accuracy for t negative. n-1 n-1/2 n n+1/2 n+1 time x, F v x, F v x, F
Efficiency of leap-frog scheme Leap-frog is extremely efficient in terms of computational cost (only 12 flops per particle excluding force evaluation) Also extremely efficient in terms of memory storage (does not require storing multiple time levels). All the work (and memory) is in force evaluation: 10N flops per particle for direct summation To update all particle positions in one second on a 1 Gflop processor requires N < 10 4 Extra efficiency can be gained by using different timesteps for each particle (more later).
4. Display and Analysis Display requires plotting particles as spatial points in 3D. Sophisticated packages render different particles with different colors, allow perspective to be rotated, fly-throughs, etc.
Quantitative analysis requires following diagnostics such as E, L, etc. for all particles. Need to store 6 words of data for each particle (x and v), in enough data dumps to give good time resolution of dynamics. Biggest simulations follow 10 9 particles, 1000 data dumps requires 48 TB (64 bit words).
Putting it all together. Should be able to put together a direct N-body code using leap-frog. Initialize x, V for N particles in region of size R Use constant time step which is << crossing time Use direct summation to compute F, with softened potential Update x,V with leap-frog for a few crossing times Output x for each particle frequently compared to crossing time Use gnuplot, etc. to plot motion of particles Experiment with different N
Or, you can just download the code from the web… Large collection of N-body codes available from Peter Teuben at University of Maryland This include Sverre Aarseth’s original NBODY0 code (first widely used direct N-body (PP) code used in astrophysics) Also see
/* * LEAPINT.C: program to integrate hamiltonian system using leapfrog. */ #include #define MAXPNT 100/* maximum number of points */ void leapstep();/* routine to take one step */ void accel();/* accel. for harmonic osc. */ void printstate();/* print out system state */ void main(argc, argv) int argc; char *argv[]; { int n, mstep, nout, nstep; double x[MAXPNT], v[MAXPNT], tnow, dt; /* first, set up initial conditions */ n = 1;/* set number of points */ x[0] = 1.0;/* set initial position */ v[0] = 0.0;/* set initial velocity */ tnow = 0.0;/* set initial time */ /* next, set integration parameters */ mstep = 256;/* number of steps to take */ nout = 4;/* steps between outputs */ dt = 1.0 / 32.0;/* timestep for integration */ /* now, loop performing integration */ for (nstep = 0; nstep < mstep; nstep++) {/* loop mstep times in all */ if (nstep % nout == 0)/* if time to output state */ printstate(x, v, n, tnow);/* then call output routine */ leapstep(x, v, n, dt);/* take integration step */ tnow = tnow + dt;/* and update value of time */ } if (mstep % nout == 0)/* if last output wanted */ printstate(x, v, n, tnow);/* then output last step */ }
/* * LEAPSTEP: take one step using the leap-from integrator, formulated * as a mapping from t to t + dt. WARNING: this integrator is not * accurate unless the timestep dt is fixed from one call to another. */ void leapstep(x, v, n, dt) double x[];/* positions of all points */ double v[];/* velocities of all points */ int n;/* number of points */ double dt;/* timestep for integration */ { int i; double a[MAXPNT]; accel(a, x, n);/* call acceleration code */ for (i = 0; i < n; i++)/* loop over all points... */ v[i] = v[i] * dt * a[i];/* advance vel by half-step */ for (i = 0; i < n; i++)/* loop over points again...*/ x[i] = x[i] + dt * v[i];/* advance pos by full-step */ accel(a, x, n);/* call acceleration code */ for (i = 0; i < n; i++)/* loop over all points... */ v[i] = v[i] * dt * a[i];/* and complete vel. step */ }
/* * ACCEL: compute accelerations for harmonic oscillator(s). */ void accel(a, x, n) double a[];/* accelerations of points */ double x[];/* positions of points */ int n;/* number of points */ { int i; for (i = 0; i < n; i++)/* loop over all points... */ a[i] = - x[i];/* use linear force law */ } /* * PRINTSTATE: output system state variables. */ void printstate(x, v, n, tnow) double x[];/* positions of all points */ double v[];/* velocities of all points */ int n;/* number of points */ double tnow;/* current value of time */ { int i; for (i = 0; i < n; i++)/* loop over all points... */ printf("%8.4f%4d%12.6f%12.6f\n", tnow, i, x[i], v[i]); }
Variable time steps with leap-frog For efficiency, need to take variable time steps (evolve particles at center of cluster on smaller timestep than particles at edge).
Variable time steps with leap-frog n-1 n-1/2 n n+1/2 n+1 time x, F v x, F v x, F However, this destroys symmetry of leap-frog; greatly increases truncation error.
Hut, Makino, & McMillan 1995 But, variable timestep leap-frog can be symmetrized
Force evaluation with variable time steps. Now particle positions are known at different time levels. Greatly complicates force calculation. Must compute derivatives of force wrt time, and use Taylor expansion to compute total force on particle at current position. The Good: Allows higher-order (Hermite) integration methods. The Bad: This just makes force evaluation even more expensive! The Ugly: Direct N-body must be optimized if we are to go beyond 10 4 particles.
Solving the force problem with hardware. Jun Makino, U. Tokyo Special purpose hardware to compute force:
GRAPE-6 The 6th generation of GRAPE (Gravity Pipe) Project Gravity calculation with 31 Gflops/chip 32 chips / board ⇒ 0.99 Tflops/board 64 boards of full system is installed in University of Tokyo ⇒ 63 Tflops On each board, all particle data are set onto SRAM memory, and each target particle data is injected into the pipeline, then acceleration data is calculated Gordon Bell Prize at SC2000, SC2001 (Prof. Makino, U. Tokyo) also nominated at SC2002
Andromeda – 2 million light years away Do we really need to compute force from every star for distant objects?
Solving the force problem with software -- tree codes Distance = 25 times size
Organize particles into a tree. In Barnes-Hut algorithm, use a quadtree in 2D
In 3D, Barnes-Hut uses an octree
If angle subtended by the particles contained in any node of tree is smaller than some criterion, then treat all particles as one. Results in an Nlog(N) algorithm.
Alternative to Barnes-Hut is KD tree. KD tree is binary - extremely efficient Requires N to be power of 2 N nodes = 2N-1
Parallelizing tree code. – Equal particles equal work. Solution: Assign costs to particles based on the work they do – Work unknown and changes with time-steps Insight : System evolves slowly Solution: Count work per particle, and use as cost for next time-step. Best strategy is to distribute particles across processors. That way, work of computing forces and integration is distributed across procs. Challenge is load balancing
A Partitioning Approach: ORB Orthogonal Recursive Bisection: – Recursively bisect space into subspaces with equal work Work is associated with bodies, as before – Continue until one partition per processor High overhead for large no. of processors
Another Approach: Costzones Insight: Tree already contains an encoding of spatial locality. Costzones is low-overhead and very easy to program
Space Filling Curves Morton Order Peano-Hilbert Order