Cell Biology I. Overview II. Membranes: How Matter Get in and Out of Cells III. Cellular Respiration IV. Photosynthesis V. DNA, RNA, and Chromosome Structure.

Slides:



Advertisements
Similar presentations
Chapter 10 How proteins are made.
Advertisements

FROM GENE TO PROTEIN.
RNA and Protein Synthesis
Proteins Synthesis Transcription and Translation By: Ms. Reis.
PHOTOSYNTHESIS.
Basics of Molecular Biology
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 Cell Structures and Their Functions Dividing Cells.
10-2: RNA and 10-3: Protein Synthesis
What organic molecule is DNA? Nucleic Acid. An organic molecule containing hydrogen, oxygen, nitrogen, carbon, and phosphorus Examples: DNA ???? RNA.
Translation and Transcription
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
How Proteins are Made. I. Decoding the Information in DNA A. Gene – sequence of DNA nucleotides within section of a chromosome that contain instructions.
Transcription Transcription is the synthesis of mRNA from a section of DNA. Transcription of a gene starts from a region of DNA known as the promoter.
Transcription and Translation
NOTES: Chapter 13 - RNA & Protein Synthesis
Protein Synthesis 12-3.
1 Genes and How They Work Chapter Outline Cells Use RNA to Make Protein Gene Expression Genetic Code Transcription Translation Spliced Genes – Introns.
From Gene to Protein A.P. Biology. Regulatory sites Promoter (RNA polymerase binding site) Start transcription DNA strand Stop transcription Typical Gene.
Raven - Johnson - Biology: 6th Ed. - All Rights Reserved - McGraw Hill Companies Genes and How They Work Chapter 15 Copyright © McGraw-Hill Companies Permission.
Chapter 17 From Gene to Protein
DNA Function: Information Transmission. ● DNA is called the “code of life.” What does it code for? *the information (“code”) to make proteins!
Central Dogma DNA  RNA  Protein. …..Which leads to  Traits.
RNA and Protein Synthesis
Protein Synthesis Process that makes proteins
12-3 RNA and Protein Synthesis
From Gene to Protein Transcription and Translation Mechanisms of Regulation DNA  RNA  Protein Transcription Translation.
12-3 RNA AND PROTEIN SYNTHESIS. 1. THE STRUCTURE OF RNA.
Lesson Overview Lesson OverviewFermentation Lesson Overview 13.1 RNA.
IX: DNA Function: Protein Synthesis A. Overview: B. Transcription: C. RNA Processing: D. Deciphering the Genetic Code.
 The central concept in biology is:  DNA determines what protein is made  RNA takes instructions from DNA  RNA programs the production of protein.
Transcription and Translation Topic 3.5. Assessment Statements Compare the structure of RNA and DNA Outline DNA transcription in terms of.
PROTEIN SYNTHESIS HOW GENES ARE EXPRESSED. BEADLE AND TATUM-1930’S One Gene-One Enzyme Hypothesis.
RNA, transcription & translation Unit 1 – Human Cells.
Biology 102 Gene Regulation and Expression Part 2.
Protein Synthesis.
Protein Synthesis. RNA vs. DNA Both nucleic acids – Chains of nucleotides Different: – Sugar – Types of bases – Numbers of bases – Number of chains –
Ch 12-3 Notes, part 2 The Central Dogma = Protein Synthesis.
RiboNucleic Acid (RNA) -Contrast RNA and DNA. -Explain the process of transcription. - Differentiate between the 3 main types of RNA -Differentiate between.
RNA and Protein Synthesis. RNA Structure n Like DNA- Nucleic acid- composed of a long chain of nucleotides (5-carbon sugar + phosphate group + 4 different.
From Gene to Protein Transcription and Translation.
Higher Human Biology Unit 1 Human Cells KEY AREA 3: Gene Expression.
Gene Expression DNA, RNA, and Protein Synthesis. Gene Expression Genes contain messages that determine traits. The process of expressing those genes includes.
CHAPTER 10 “HOW PROTEINS ARE MADE”. Learning Targets  I will compare the structure of RNA with that of DNA.  I will summarize the process of transcription.
Gene Expression How proteins are made.. what monomers make up proteins? what monomers make up nucleic acids (DNA and RNA)? WORKTOGETHERWORKTOGETHER.
Lecture 4: DNA and Proteins. I. DNA, RNA, and Chromosome Structure A. DNA and RNA Structure 1. monomers are “nucleotides” three parts: - pentose sugar.
12-3 RNA and Protein Synthesis Page 300. A. Introduction 1. Chromosomes are a threadlike structure of nucleic acids and protein found in the nucleus of.
From Gene to Protein Chapter 17. Overview of Transcription & Translation.
PROTEIN SYNTHESIS. CENTRAL DOGMA OF MOLECULAR BIOLOGY: DNA is used as the blueprint to direct the production of certain proteins.
DNA to RNA to Protein. RNA Made up of 1. Phosphate 2. Ribose (a sugar) 3. Four bases RNA bases are: Adenine Guanine Cytosine Uracil (instead of thymine)
RNA and Protein Synthesis
Gene Expression: From Gene to Protein
Transcription Part of the message encoded within the sequence of bases in DNA must be transcribed into a sequence of bases in RNA before translation can.
Topic DNA.
Transcription & Translation.
Cell Biology I. Overview
III. DNA, Protein Synthesis, and Mitosis
How Proteins are Made.
12-3 RNA and Protein Synthesis
How Proteins are Made Biology I: Chapter 10.
PROTEIN SYNTHESIS.
Cell Biology I. Overview
(Transcription & Translation)
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
12-3 RNA and Protein Synthesis
GENE EXPRESSION / PROTEIN SYNTHESIS
CHAPTER 17 FROM GENE TO PROTEIN.
Protein Synthesis The genetic code – the sequence of nucleotides in DNA – is ultimately translated into the sequence of amino acids in proteins – gene.
mitosis Gene Regulation A. Overview
Cell Biology I. Overview
LAST UNIT! Energetics.
Presentation transcript:

Cell Biology I. Overview II. Membranes: How Matter Get in and Out of Cells III. Cellular Respiration IV. Photosynthesis V. DNA, RNA, and Chromosome Structure VI. Protein Synthesis

Why is this important? Well…what do proteins DO?

VI. Protein Synthesis Why is this important? Well…what do proteins DO? Think about it this way: 1)sugars, fats, lipids, nucleic acids and proteins, themselves, are broken down and built up through chemical reactions catalyzed by enzymes. 2)So everything a cell IS, and everything it DOES, is either done by proteins or is done by molecules put together by proteins.

VI. Protein Synthesis A. Overview A T G C T G A C T A C T G T A C G A CT G A T G A C Genes are read by enzymes and RNA molecules are produced… this is TRANSCRIPTION U G C U G A C U A C U (m-RNA) (r-RNA) (t-RNA)

VI. Protein Synthesis A. Overview A T G C T G A C T A C T G T A C G A CT G A T G A C Genes are read by enzymes and RNA molecules are produced… this is TRANSCRIPTION U G C U G A C U A C U (m-RNA) Eukaryotic RNA and some prokaryotic RNA have regions cut out… this is RNA SPLICING (r-RNA) (t-RNA)

VI. Protein Synthesis A. Overview A T G C T G A C T A C T G T A C G A CT G A T G A C U G C U G A C U A C U (m-RNA) (r-RNA) (t-RNA) R-RNA is complexed with proteins to form ribosomes. Specific t-RNA’s bind to specific amino acids. ribosome Amino acid

VI. Protein Synthesis A. Overview A T G C T G A C T A C T G T A C G A CT G A T G A C U G C U G A C U A C U (m-RNA) (r-RNA) (t-RNA) The ribosome reads the m-RNA. Based on the sequence of nitrogenous bases in the m-RNA, a specific sequence of amino acids (carried to the ribosome by t-RNA’s) is linked together to form a protein. This is TRANSLATION. ribosome Amino acid

VI. Protein Synthesis A. Overview A T G C T G A C T A C T G T A C G A CT G A T G A C U G C U G A C U A C U (m-RNA) (r-RNA) (t-RNA) The protein product may be modified (have a sugar, lipid, nucleic acid, or another protein added) and/or spliced to become a functional protein. This is POST-TRANSLATIONAL MODIFICATION. ribosome Amino acid glycoprotein

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription a. The message is on one strand of the double helix - the sense strand: 3’ 5’ “TAG A CAT” message makes ‘sense’ “ATC T GTA” ‘nonsense’ limited by complementation A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription a. The message is on one strand of the double helix - the sense strand: 3’ 5’ In all eukaryotic genes and in some prokaryotic sequences, there are introns and exons. There may be multiple introns of varying length in a gene. Genes may be several thousand base-pairs long. This is a simplified example! A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense intronexon

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription b. The cell 'reads' the correct strand based on the location of the promoter, the anti- parallel nature of the double helix, and the chemical limitations of the 'reading' enzyme, RNA Polymerase. 3’ 5’ Promoters have sequences recognized by the RNA Polymerase. They bind in particular orientation. A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense intronexon Promoter

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription b. The cell 'reads' the correct strand based on the location of the promoter, the anti- parallel nature of the double helix, and the chemical limitations of the 'reading' enzyme, RNA Polymerase. 3’ 5’ 1)Strand separate 2)RNA Polymerase can only synthesize RNA in a 5’  3’ direction, so they only read the anti-parallel, 3’  5’ strand (‘sense’ strand). A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense intronexon Promoter G C A U GUUU G C C A A U AUG A U G A

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription c. Transcription ends at a sequence called the 'terminator'. Terminator sequences destabilize the RNA Polymerase and the enzyme decouples from the DNA, ending transcription 3’ 5’ A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense intronexon Promoter G C A U GUUU G C C A A U AUG A U G A Terminator

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription c. Transcription ends at a sequence called the 'terminator'. 3’ 5’ A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense intronexon Promoter G C A U GUUU G C C A A U AUG A U G A Terminator Initial RNA PRODUCT:

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription c. Transcription ends at a sequence called the 'terminator'. 3’ 5’ A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense PromoterTerminator intronexon G C A U GUUU G C C A A U AUG A U G A Initial RNA PRODUCT:

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing intronexon Initial RNA PRODUCT: Introns are spliced out, and exons are spliced together. Sometimes these reactions are catalyzed by the intron, itself, or other catalytic RNA molecules called “ribozymes”. G C A U GUUU G C C A A UAUG AU G A

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing intron exon Final RNA PRODUCT: This final RNA may be complexed with proteins to form a ribosome (if it is r-RNA), or it may bind amino acids (if it is t-RNA), or it may be read by a ribosome, if it is m- RNA and a recipe for a protein. G C A U GUUU G C C A A U AUG A U G A

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation a. m-RNA attaches to the ribosome at the 5' end. M-RNA:G C A U G U U U G C C A A UU G A

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation a. m-RNA attaches to the ribosome at the 5' end. M-RNA:G C A U G U U U G C C A A UU G A It then reads down the m-RNA, one base at a time, until an ‘AUG’ sequence (start codon) is positioned in the first reactive site.

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation a. m-RNA attaches to the ribosome at the 5' end. b. a specific t-RNA molecule, with a complementary UAC anti-codon sequence, binds to the m-RNA/ribosome complex. M-RNA:G C A U G U U U G C C A A UU G A Meth

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation a. m-RNA attaches to the ribosome at the 5' end. b. a specific t-RNA molecule, with a complementary UAC anti-codon sequence, binds to the m-RNA/ribosome complex. c. A second t-RNA-AA binds to the second site M-RNA:G C A U G U U U G C C A A UU G A MethPhe

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation a. m-RNA attaches to the ribosome at the 5' end. b. a specific t-RNA molecule, with a complementary UAC anti-codon sequence, binds to the m-RNA/ribosome complex. c. A second t-RNA-AA binds to the second site d. Translocation reactions occur M-RNA:G C A U G U U U G C C A A UU G A Meth Phe The amino acids are bound and the ribosome moves 3-bases “downstream”

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation e. polymerization proceeds M-RNA:G C A U G U U U G C C A A UU G A MethPhe The amino acids are bound and the ribosome moves 3-bases “downstream” AlaAsn

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation e. polymerization proceeds M-RNA:G C A U G U U U G C C A A UU G A MethPhe The amino acids are bound and the ribosome moves 3-bases “downstream” Ala Asn

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation e. polymerization proceeds f. termination of translation M-RNA:G C A U G U U U G C C A A UU G A Some 3-base codon have no corresponding t-RNA. These are stop codons, because translocation does not add an amino acid; rather, it ends the chain. MethPheAlaAsn

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis 1. Transcription 2. Transcript Processing 3. Translation 4. Post-Translational Modifications Most initial proteins need to be modified to be functional. Most need to have the methionine cleaved off; others have sugar, lipids, nucleic acids, or other proteins are added. MethPheAlaAsn

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis C. Regulation of Protein Synthesis 1. Regulation of Transcription - DNA bound to histones can’t be accessed by RNA Polymerase - but the location of histones changes, making genes accessible (or inaccessible) Initially, the orange gene is “off”, and the green gene is “on” Now the orange gene is “on” and the green gene is “off”.

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis C. Regulation of Protein Synthesis 1. Regulation of Transcription 3’ 5’ Transcription factors can inhibit or encourage the binding of the RNA Polymerase. And, through signal transduction, environmental factors can influence the activity of these transcription factors. So cells can respond genetically to changes in their environment. A C T A T A C G T A C A A A C G G T T A T A C T A C T T T T G A T A T G C A T G T T T G C C A A T A T G A T G A A A sense nonsense intronexon Promoter RNA POLY

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis C. Regulation of Protein Synthesis 1. Regulation of Transcription 2. Transcript Processing intronexon Initial RNA PRODUCT: Mi-RNA’s and si-RNA’s are small RNA molecules that can bind to m-RNA and disrupt correct spicing, creating non-functional m-RNA’s. G C A U GUUU G C C A A UAUG AU G A U A U A Cut not made

M-RNA:G C A U G U U U U G A A A UU G A Incorrect splicing can result in a ‘premature’ stop codon, terminating translation early, resulting in a non-functional protein. MethPhe VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis C. Regulation of Protein Synthesis 1. Regulation of Transcription 2. Transcript Processing 3. Regulating Translation

The patterns of cleavage and modification can vary. MethPheAlaAsn VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis C. Regulation of Protein Synthesis 1. Regulation of Transcription 2. Transcript Processing 3. Regulating Translation 4. Regulating Post-Translational Modification

VI. Protein Synthesis A. Overview B. The Process of Protein Synthesis C. Regulation of Protein Synthesis 1. Regulation of Transcription 2. Transcript Processing 3. Regulating Translation 4. Regulating Post-Translational Modification Protein ? Affected by other genes Affected by other cells Affected by the environment Gene activity is responsive to cellular and environmental cues