Study of TAE stability vs. central shear and q(0) Document the scaling of TAE/EPM stability with: –q(0) (mode structure) –Density profile (mode structure)

Slides:



Advertisements
Similar presentations
W. Heidbrink, G. Kramer, R. Nazikian, M. Van Zeeland, M. Austin, H. Berk, K. Burrell, N. Gorelenkov, Y. Luo, G. McKee, T. Rhodes, G. Wang, and the DIII-D.
Advertisements

XP 1157 Increasing the CHI start-up current magnitude in NSTX B.A. Nelson et al. 1.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
TAE-EP Interaction in ARIES ACT-I K. Ghantous, N.N Gorelenkov PPPL ARIES Project Meeting,, 26 Sept
STATUS OF THE HHFW CURRENT DRIVE EXPERIMENT ON NSTX Phil Ryan, Randy Wilson, David Swain, Bob Pinsker March 3, 2004 run date. This XP is focused on CD.
Introduction to Spherical Tokamak
Wave-Particle Interactions TSG Mid-Run Assessment Gary Taylor NSTX Supported by NSTX Mid-Run Assessment Meeting June 17, College W&M Colorado Sch.
XP 905: Current Profile Modifications and Fast Ion Loss from BAAEs/EPMs D. Darrow, et al. April 8, 2009.
Fast ion effects on fishbones and n=1 kinks in JET simulated by a non-perturbative NOVA-KN code TH/5-2Rb N.N. Gorelenkov 1), C.Z.Cheng 1), V.G. Kiptily.
IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 1 – A. Staebler, A.C.C Sips, M. Brambilla, R. Bilato, R. Dux, O. Gruber, J. Hobirk,
Fast Ion Driven Instabilities on NSTX E.D. Fredrickson, C.Z. Cheng, D. Darrow, G. Fu, N.N. Gorelenkov, G Kramer, S S Medley, J. Menard, L Roquemore, D.
Overview of ASDEX Upgrade Results – Development of integrated operating scenarios for ITER The ASDEX Upgrade Team presented by Sibylle Günter MPI für Plasmaphysik,
TH/3-1Ra Nonperturbative Effects of Energetic Ions on Alfvén Eigenmodes by Y. Todo et al. EX/5-4Rb Configuration Dependence of Energetic Ion Driven Alfven.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
C Gormezano, S Ide ITPA SSO&EP IEA-LT/ ITPA Collaboration 1 Steady State Operation & Energetic Particles Advanced Scenario need the same development path.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
1 CHI Summary Transient CHI (XP606) –All systems operated reliably without any faults Edge Current drive (XP533)
TITLE: Scaling of the far SOL turbulence as a function of (1), the average density keeping other plasma parameters constant. (3), the plasma current keeping.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
ITER Standard H-mode, Hybrid and Steady State WDB Submissions R. Budny, C. Kessel PPPL ITPA Modeling Topical Working Group Session on ITER Simulations.
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
2 The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally Over a Wide Range of Tangency Angles Covers Thermal ( keV) and Energetic Ion.
NSTX Boundary Density Fluctuation Measurement by FIReTIP System with USN/LSN Configurations K.C. Lee, C.W. Domier, M. Johnson, N.C. Luhmann, Jr. University.
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
F P Orsitto ENEA Frascati 12th ITPA Princeton march 071 Report on the meeting of ITPA TG Steady-State Operations and ITPA TG Transport proposal Francesco.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
(National Institute for Fusion Science, Japan)
Study of NSTX Electron Density and Magnetic Field Fluctuation using the FIReTIP System K.C. Lee, C.W. Domier, M. Johnson, N.C. Luhmann, Jr. University.
NSTX EXPERIMENTAL PROPOSAL - OP-XP-825 Title: HHFW Heating/CD phase scans in D L-mode plasmas P. Ryan, J. Hosea, R. Bell, L. Delgado-Aparicio, S. Kubota,
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
Current holes at ASDEX Upgrade Presented by O. Gruber for D. Merkl, J. Hobirk, P.J. McCarthy, E. Strumberger, ASDEX Upgrade Team - hardware upgrades for.
Measurement of toroidal rotation velocity profiles in KSTAR S. G. Lee, Y. J. Shi, J. W. Yoo, J. Seol, J. G. Bak, Y. U. Nam, Y. S. Kim, M. Bitter, K. Hill.
NSTX Contributions to ITPA L- and H-mode Global Databases S. M. Kaye 30 July 2003.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority ITB formation and evolution with co- and counter NBI A. R. Field, R. J. Akers,
Exploration of High Harmonic Fast Wave Heating on NSTX J. R. Wilson 2002 APS Division of Plasma Physics Meeting November 11-15, 2002 Orlando, Florida.
1 Stability Studies Plans (FY11) E. Fredrickson, For the NCSX Team NCSX Research Forum Dec. 7, 2006 NCSX.
RFX-mod programme workshop, January 2009 Scenario and operational issues for high current L. Zanotto, R. Cavazzana, S. Dal Bello, F. Milani.
TRANSP for core particle transport studies M. Maslov.
Modeling of beam ion transport during TAE Avalanches on NSTX Eric Fredrickson M. Podestà, A. Bortolon, N.Crocker,D. Darrow, G. Fu, N. Gorelenkov, G Kramer,
Non-linear MHD modelling of RMPs with toroidal rotation and resonant and non-resonant plasma braking. M.Becoulet G. Huysmans, E. Nardon Association Euratom-CEA,
FY WEP TSG Goals & WEP-Relevant Diagnostic Upgrades NSTX Supported by WEP TSG Meeting September 14,
SMK – XP 1 XP 811: Effect of Rotation on Energy/Impurity Confinement S. Kaye, L. Delgado-Aparicio Joule Milestone Description –XP directly addresses Joule.
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Simulations of Energetic Particle Modes In Spherical Torus G.Y. Fu, J. Breslau, J. Chen, E. Fredrickson, S. Jardin, W. Park Princeton Plasma Physics Laboratory.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Status of NSTX/DIII-D/MAST aspect ratio core confinement comparison studies M. Peng, for E.J. Synakowski For the ITPA Transport Physics Working Group Kyota,
Nonlinear plasma-wave interactions in ion cyclotron range of frequency N Xiang, C. Y Gan, J. L. Chen, D. Zhou Institute of plasma phsycis, CAS, Hefei J.
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
HT-7 Proposal of the investigation on the m=1 mode oscillations in LHCD Plasmas on HT-7 Exp2005 ASIPP Youwen Sun, Baonian Wan and the MHD Team Institute.
NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
M. Fitzgerald, S.E. Sharapov, P. Rodrigues2, D. Borba2
High-beta Program 3 June 2002 Objective: Investigate effect of toroidal currents on high-b performance: 1. Low-iota: discharges with current ramp and constant.
8th IAEA Technical Meeting on
C.Mazzotta Peaked Density Profiles due to Neon Injection on FTU
Presentation transcript:

Study of TAE stability vs. central shear and q(0) Document the scaling of TAE/EPM stability with: –q(0) (mode structure) –Density profile (mode structure) –  (increased Landau damping of TAE) Acquire more information on the structure and amplitude of the modes: –Upgraded soft x-ray system –Firetip?

EPM/TAE induced losses seen in existing "near hybrid" scenarios Need both: –Empirical information on parametric dependences of modes. –Ability to model effects on fast ion transport. Study will focus on scans of: –q-profile shape, –Density profile shape, –beta Paucity of data at high  largely reflects small dwell-time at highest  as well as the pathology of shots reaching high .

Previous experiment found suggestion of toroidal mode number scaling At 0.5 MA, toroidal mode numbers from 1 to 6. At 1.0 MA, toroidal mode numbers from 3 to 6. Data not that clean… 0.5 MA 1.0 MA

Run plan overview Goals: Determine q-profile, density profile shape dependence of stability, Look for Landau damping stabilization of TAE (  scan) (Reference shot tbd, based on early shots in campaign)  ) Early H-mode, fast current ramp.(8 shots) –One, two and three sources, 2 shots each. –Delay third source, decouple  and q, 2 shots. B) Delayed H-mode(6 shots) –No current ramp pause, beam power scan, 2 shots each. C) L-mode (He puffing)(6 shots) –One, two and three sources, 2 shots each.

Run plan overview (cont.) D) Slower current ramp, delayed H-mode(6 shots) –Let q min drop lower, decide based on amount of change seen in A-D. Or D)Beam voltage scan(? shots) –Choose best case from A-D, drop beam voltage to 70 kV, then up or down 5 kV. Source A still at 90 kV, but on-time delayed until peak of MHD activity. –Also, consider how much time is left.