Objectives  Represent systems of equations with matrices  Find dimensions of matrices  Identify square matrices  Identify an identity matrix  Form.

Slides:



Advertisements
Similar presentations
Chapter 4 Systems of Linear Equations; Matrices
Advertisements

Chapter 2 Simultaneous Linear Equations
Chapter 4 Systems of Linear Equations; Matrices Section 2 Systems of Linear Equations and Augmented Matrics.
1 Systems of Linear Equations & Matrices Sections 4.2 & 4.3 After today’s lesson, you will be able to Use terms associated with matrices. Set up and solve.
Objectives  Represent systems of equations with matrices  Find dimensions of matrices  Identify square matrices  Identify an identity matrix  Form.
Lesson 8 Gauss Jordan Elimination
Solving Systems of Linear Equations Part Pivot a Matrix 2. Gaussian Elimination Method 3. Infinitely Many Solutions 4. Inconsistent System 5. Geometric.
Linear Systems and Matrices
Lesson 8.1, page 782 Matrix Solutions to Linear Systems
Chapter 1 Section 1.2 Echelon Form and Gauss-Jordan Elimination.
5  Systems of Linear Equations: ✦ An Introduction ✦ Unique Solutions ✦ Underdetermined and Overdetermined Systems  Matrices  Multiplication of Matrices.
1 Systems of Linear Equations & Matrices Sections 4.2 & 4.3 After today’s lesson, you will be able to Use terms associated with matrices. Set up and solve.
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
Systems of linear equations. Simple system Solution.
Chapter 4 Systems of Linear Equations; Matrices
Matrix Solution of Linear Systems The Gauss-Jordan Method Special Systems.
SYSTEMS OF LINEAR EQUATIONS
1 1.1 © 2012 Pearson Education, Inc. Linear Equations in Linear Algebra SYSTEMS OF LINEAR EQUATIONS.
8.1 Matrix Solutions to Linear Systems Veronica Fangzhu Xing 3 rd period.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Systems and Matrices (Chapter5)
Section 4.1 Using Matrices to Represent Data. Matrix Terminology A matrix is a rectangular array of numbers enclosed in a single set of brackets. The.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Review for Chapter 4 Important Terms, Symbols, Concepts 4.1. Systems of Linear Equations in Two Variables.
Matrices King Saud University. If m and n are positive integers, then an m  n matrix is a rectangular array in which each entry a ij of the matrix is.
Copyright © Cengage Learning. All rights reserved. 7.4 Matrices and Systems of Equations.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Warm-Up Write each system as a matrix equation. Then solve the system, if possible, by using the matrix equation. 6 minutes.
Sec 3.1 Introduction to Linear System Sec 3.2 Matrices and Gaussian Elemination The graph is a line in xy-plane The graph is a line in xyz-plane.
Three variables Systems of Equations and Inequalities.
8.1 Matrices and Systems of Equations. Let’s do another one: we’ll keep this one Now we’ll use the 2 equations we have with y and z to eliminate the y’s.
Chapter 7 Notes Honors Pre-Calculus. 7.1/7.2 Solving Systems Methods to solve: EXAMPLES: Possible intersections: 1 point, 2 points, none Elimination,
Chapter 6 Matrices and Determinants Copyright © 2014, 2010, 2007 Pearson Education, Inc Matrix Solutions to Linear Systems.
Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix.
Matrix Solutions to Linear Systems. 1. Write the augmented matrix for each system of linear equations.
Using Matrices A matrix is a rectangular array that can help us to streamline the solving of a system of equations The order of this matrix is 2 × 3 If.
Chapter 11 Section 11.4 Solving Larger Systems of Equations.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Systems and Matrices Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Chapter 1 Section 1.1 Introduction to Matrices and systems of Linear Equations.
Objectives  Find the inverse of a matrix  Find matrix inverses with technology  Solve matrix equations  Solve matrix equations with technology Inverse.
MCV4U1 Matrices and Gaussian Elimination Matrix: A rectangular array (Rows x Columns) of real numbers. Examples: (3 x 3 Matrix) (3 x 2 Matrix) (2 x 2 Matrix)
Copyright © 2011 Pearson Education, Inc. Solving Linear Systems Using Matrices Section 6.1 Matrices and Determinants.
Matrices and Systems of Equations
Matrices and Systems of Linear Equations
Section 1.2 Gaussian Elimination. REDUCED ROW-ECHELON FORM 1.If a row does not consist of all zeros, the first nonzero number must be a 1 (called a leading.
Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.
Linear Equation System Pertemuan 4 Matakuliah: S0262-Analisis Numerik Tahun: 2010.
 SOLVE SYSTEMS OF EQUATIONS USING MATRICES. Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 9.3 Matrices and Systems of Equations.
Section 4Chapter 4. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Solving Systems of Linear Equations by Matrix Methods Define.
10.3 Systems of Linear Equations: Matrices. A matrix is defined as a rectangular array of numbers, Column 1Column 2 Column jColumn n Row 1 Row 2 Row 3.
10.2 Systems of Linear Equations: Matrices Objectives Objectives 1.Write the Augmented Matrix 2.Write the System from the Augmented matrix 3.Perform Row.
Matrices and Systems of Equations
Meeting 19 System of Linear Equations. Linear Equations A solution of a linear equation in n variables is a sequence of n real numbers s 1, s 2,..., s.
1 Section 5.3 Linear Systems of Equations. 2 THREE EQUATIONS WITH THREE VARIABLES Consider the linear system of three equations below with three unknowns.
7.3 & 7.4 – MATRICES AND SYSTEMS OF EQUATIONS. I N THIS SECTION, YOU WILL LEARN TO  Write a matrix and identify its order  Perform elementary row operations.
Def: A matrix A in reduced-row-echelon form if 1)A is row-echelon form 2)All leading entries = 1 3)A column containing a leading entry 1 has 0’s everywhere.
Chapter 6 Matrices and Determinants Copyright © 2014, 2010, 2007 Pearson Education, Inc Inconsistent and Dependent Systems and Their Applications.
Section 5.3 MatricesAnd Systems of Equations. Systems of Equations in Two Variables.
Chapter 5: Matrices and Determinants Section 5.5: Augmented Matrix Solutions.
Multivariable linear systems.  The following system is said to be in row-echelon form, which means that it has a “stair-step” pattern with leading coefficients.
Def: A matrix A in reduced-row-echelon form if 1)A is row-echelon form 2)All leading entries = 1 3)A column containing a leading entry 1 has 0’s everywhere.
Section 6-1: Multivariate Linear Systems and Row Operations A multivariate linear system (also multivariable linear system) is a system of linear equations.
Chapter 4 Systems of Linear Equations; Matrices
Gaussian Elimination and Gauss-Jordan Elimination
Solving Systems of Equations Using Matrices
Chapter 8: Lesson 8.1 Matrices & Systems of Equations
Matrices and Systems of Equations 8.1
Matrices and Systems of Equations
Chapter 1: Linear Equations in Linear Algebra
Warm-up: Solve the system: 2x – 0.4y = -2 3x – 1 2 y = -2
Presentation transcript:

Objectives  Represent systems of equations with matrices  Find dimensions of matrices  Identify square matrices  Identify an identity matrix  Form an augmented matrix  Identify a coefficient matrix  Reduce a matrix with row operations  Reduce a matrix to its row-echelon form  Solve systems of equations using the Gauss-Jordan elimination method

Matrix Representation of Systems of Equations When given a system of equations, it can be written as a matrix. The column to the right of the vertical line, containing the constants of the equations, is called the augment of the matrix, and a matrix containing an augment is called an augmented matrix.

Any augmented matrix that has 1’s or 0’s on the diagonal of its coefficient part and 0's below the diagonal is said to be in row-echelon form.

Example Solve the system Solution Begin by writing the augmented matrix.

Example (cont) Interchange equations 1 and 2; thus change rows 1 and 2. Get 0 as the first entry in the second row and the first entry of the third row. –2R 1 + R 2 →R 2 –3R 1 + R 3 →R 3

Example (cont) –1R 2 → R 2 –4R 2 + R 3 → R 3 (–1/19)R 3 → R 3

Example (cont) The matrix is now in row-echlon form. The equivalent system can be solved by back substitution. The solution is (2, 1,  2).

Gauss-Jordan Elimination The augmented matrix representing n equations in n variables is said to be in reduced row-echelon form if it has 1’s or 0’s on the diagonal of its coefficient part and 0’s everywhere else.

Example Solve the system Solution Represent by the augmented matrix.

Example (cont) We can enter this augmented matrix into a graphing calculator and reduce the matrix to row-echelon form. x = 1, y = 11, z = –4, w = –5, or (1, 11, –4, –5)

Dependent and Inconsistent Systems A system with fewer equations than variables has either infinitely many solutions or no solutions. If a row of the reduced row-echelon coefficient matrix associated with a system contains all 0’s and the augment of that row contains a nonzero number, the system has no solution and is an inconsistent system. If a row of the reduced 3 × 3 row-echelon coefficient matrix associated with a system contains all 0’s and the augment of that row also contains 0, then there are infinitely many solutions and is a dependent system.

Example Ace Trucking Company has an order for delivery of three products: A, B, and C. If the company can carry 30,000 cubic feet and 62,000 pounds and is insured for $276,000, how many units of each product can be carried?

Example (cont) If we represent the number of units of product A by x, the number of units of product B by y, and the number of units of product C by z, then we can write a system of equations to represent the problem.

Example (cont) The Gauss-Jordan elimination method gives

Example (cont) To save time, if we use a graphing calculator. The solution to this system is x = –560 + z, y = 2000 – 2.5z, with the values of z limited so that all values are nonnegative integers. Product C: 560 ≤ z ≤ 800 (z is an even integer) Product B: y = 2000 – 2.5z Product A: x = –560 + z

Assignment Pg #15-21 (Must show work) #23-31 (May use the calculator) #34, #39 and #42