Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information A Multi-Layered,

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

Building Wordnets Piek Vossen, Irion Technologies.
Improving Learning Object Description Mechanisms to Support an Integrated Framework for Ubiquitous Learning Scenarios María Felisa Verdejo Carlos Celorrio.
JRC 2005/05/10 Automatic event extraction from text on the base of linguistic and semantic annotation Thierry Declerck DFKI – Language Technology Lab.
CILC2011 A framework for structured knowledge extraction and representation from natural language via deep sentence analysis Stefania Costantini Niva Florio.
A Stepwise Modeling Approach for Individual Media Semantics Annett Mitschick, Klaus Meißner TU Dresden, Department of Computer Science, Multimedia Technology.
Prof. Carolina Ruiz Computer Science Department Bioinformatics and Computational Biology Program WPI WELCOME TO BCB4003/CS4803 BCB503/CS583 BIOLOGICAL.
The SALSA experience: semantic role annotation Katrin Erk University of Texas at Austin.
Hermes: News Personalization Using Semantic Web Technologies
Toward Linguistically Grounded Ontologies by Paul Buitelaar, Philipp Cimiano, Peter Haase, and Michael Sintek (Ireland, Netherlands, Germany) presented.
Opinion Mapping Travelblogs Efthymios Drymonas Alexandros Efentakis Dieter Pfoser Research Center Athena Institute for the Management of Information Systems.
© Paul Buitelaar: eJustice Presentation, July 15th, 2004 Ontologies Contributions from Language Technology Paul Buitelaar DFKI GmbH Language Techology.
© Paul Buitelaar: KnowledgeWeb Summer School, Spain - July 2004 Human Language Technology in Ontology Engineering Ontology Learning from Text Paul Buitelaar.
Language Technology for the Semantic Web OntoWeb/AgentLink, Barcelona: February 4 th,2003 OntoWeb SIG5 Language Technology in.
Sunita Sarawagi.  Enables richer forms of queries  Facilitates source integration and queries spanning sources “Information Extraction refers to the.
Supervised by Prof. LYU, Rung Tsong Michael Department of Computer Science & Engineering The Chinese University of Hong Kong Prepared by: Chan Pik Wah,
J. Turmo, 2006 Adaptive Information Extraction Summary Information Extraction Systems Multilinguality Introduction Language guessers Machine Translators.
Information Extraction, Language Technology and the Semantic Web Thierry Declerck & Paul Buitelaar (DFKI GmbH)
The LC-STAR project (IST ) Objectives: Track I (duration 2 years) Specification and creation of large word lists and lexica suited for flexible.
 Copyright 2009 Digital Enterprise Research Institute. All rights reserved Digital Enterprise Research Institute Ontologies & Natural Language.
Detection of Relations in Textual Documents Manuela Kunze, Dietmar Rösner University of Magdeburg C Knowledge Based Systems and Document Processing.
Language Technology and the Semantic Web Thierry Declerck & Paul Buitelaar (Saarland University & DFKI GmbH)
Ontology Lexicalisation In collaboration with John McCrae, Philipp Cimiano (CITEC, Univ. of Bielefeld) Elena Montiel-Ponsado (Universidad Politecnica Madrid)
Sharing linguistic multi-media resources Jacquelijn Ringersma Paul Trilsbeek Max Planck Institute for Psycholinguistics Nijmegen, The Netherlands.
1 An Analytical Evaluation of BPMN Using a Semiotic Quality Framework Terje Wahl & Guttorm Sindre NTNU, Norway Terje Wahl, 14. June 2005.
Processing of large document collections Part 10 (Information extraction: multilingual IE, IE from web, IE from semi-structured data) Helena Ahonen-Myka.
RuleML-2007, Orlando, Florida1 Towards Knowledge Extraction from Weblogs and Rule-based Semantic Querying Xi Bai, Jigui Sun, Haiyan Che, Jin.
Language Technology for the Semantic Web OntoWeb5,Florida,October 17 th,2003 WP12: Language Technology Overview SIG5 Paul Buitelaar.
Survey of Semantic Annotation Platforms
Learning Object Metadata Mining Masoud Makrehchi Supervisor: Prof. Mohamed Kamel.
LIRICS mid-term review 1 LIRICS WP3: Morpho-syntactic and syntactic annotations Thierry Declerck DFKI-LT - Saarbrücken 23rd May 2006.
Session II: Scientific Publishing and Semantic Web W3C Semantic Web for Life Sciences Workshop October 27, 2004 Moderator: Alan R. Aronson.
PLATFORM INDEPENDENT SOFTWARE DEVELOPMENT MONITORING Mária Bieliková, Karol Rástočný, Eduard Kuric, et. al.
Funded by: European Commission – 6th Framework Project Reference: IST WP 2: Learning Web-service Domain Ontologies Miha Grčar Jožef Stefan.
OWL Capturing Semantic Information using a Standard Web Ontology Language Aditya Kalyanpur Jennifer Jay Banerjee James Hendler Presented By Rami Al-Ghanmi.
ATLAS Demystified: A Practical Introduction Christophe Laprun, Jonathan Fiscus, John Garofolo, Sylvain Pajot National Institute of Standards and Technology.
A Web Application for Customized Corpus Delivery Nancy Ide, Keith Suderman, Brian Simms Department of Computer Science Vassar College USA.
Scott Duvall, Brett South, Stéphane Meystre A Hands-on Introduction to Natural Language Processing in Healthcare Annotation as a Central Task for Development.
SDMX Standards Relationships to ISO/IEC 11179/CMR Arofan Gregory Chris Nelson Joint UNECE/Eurostat/OECD workshop on statistical metadata (METIS): Geneva.
© Paul Buitelaar, February 2002 Corpus Annotation Day at DI Multi-Layer Annotation for Cross- Lingual Information Retrieval in the Medical Domain Paul.
Jennie Ning Zheng Linda Melchor Ferhat Omur. Contents Introduction WordNet Application – WordNet Data Structure - WordNet FrameNet Application – FrameNet.
Shijian Lu and C écile Paris CSIRO ICT Centre Sydney, Australia Authoring Content Structure for Adaptive Documents.
©Ferenc Vajda 1 Semantic Grid Ferenc Vajda Computer and Automation Research Institute Hungarian Academy of Sciences.
Jan 9, 2004 Symposium on Best Practice LSA, Boston, MA 1 Comparability of language data and analysis Using an ontology for linguistics Scott Farrar, U.
Collocations and Information Management Applications Gregor Erbach Saarland University Saarbrücken.
- 1 - Information Modelling of Language and Text: XML-based, multi-level, semantic-oriented. - Some methods (only)-
Project Overview Vangelis Karkaletsis NCSR “Demokritos” Frascati, July 17, 2002 (IST )
ISO-PWI Lexical ontology some loose remarks Thierry Declerck, DFKI GmbH.
Ontology-Centered Personalized Presentation of Knowledge Extracted from the Web Ralitsa Angelova.
Mayo cTAKES: UIMA Type System
Using Domain Ontologies to Improve Information Retrieval in Scientific Publications Engineering Informatics Lab at Stanford.
Towards Linguistically Grounded Ontologies Paul Buitelaar, Philipp Cimiano, Peter Haase, and Michael Sintek Proceedings of the 6 th European Semantic Web.
Issues in Ontology-based Information integration By Zhan Cui, Dean Jones and Paul O’Brien.
Digital Video Library Network Supervisor: Prof. Michael Lyu Student: Ma Chak Kei, Jacky.
Personalized Recommendation of Related Content Based on Automatic Metadata Extraction Andreas Nauerz 1, Fedor Bakalov 2, Birgitta.
DANIELA KOLAROVA INSTITUTE OF INFORMATION TECHNOLOGIES, BAS Multimedia Semantics and the Semantic Web.
Knowledge Support for Modeling and Simulation Michal Ševčenko Czech Technical University in Prague.
July 2002, DI Colloquium Semantic Annotation for Semantic Indexing Paul Buitelaar, Martin VolkMuchMore DFKI Language Technology Saarbrücken, Germany Eurospider.
1 Knowledge-Based Medical Image Indexing and Retrieval Caroline LACOSTE Joo Hwee LIM Jean-Pierre CHEVALLET Daniel RACOCEANU Nicolas Maillot Image Perception,
WP1: Application Ontology Management Maria Teresa Pazienza Dept. Of Computer Science University of Rome “Tor Vergata”
Digital Image Annotation Tool. INTRODUCTION Incorporation of digital media types Unstructured digital data Portal for managing annotations and tracking.
Trends in NL Analysis Jim Critz University of New York in Prague EurOpen.CZ 12 December 2008.
UNIFIED MEDICAL LANGUAGE SYSTEMS (UMLS)
Kenneth Baclawski et. al. PSB /11/7 Sa-Im Shin
Lecture #11: Ontology Engineering Dr. Bhavani Thuraisingham
Natural Language Processing (NLP)
Linguistic Essentials
C SC 620 Advanced Topics in Natural Language Processing
Natural Language Processing (NLP)
Natural Language Processing (NLP)
Presentation transcript:

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information A Multi-Layered, XML-Based Approach to the Integration of Linguistic and Semantic Annotations Thierry Declerck, Paul Buitelaar University of the Saarland & DFKI GmbH Saarbrücken, Germany In this presentation are also slides and graphics included, which are taken from three presentations at the EUROLAN 2003 in Bucharest. Authors are P.Vossen (Wordnet, EuroWordNet, Global Wordnet), A. Lenci (Computational Lexicons and the Semantic Web) and Srini Narayanan (FrameNet Meets the Semantic Web). Also included are graphics from M. Fernández-López and A. Gómez-Pérez Asun Gomez Perez (UPM) from the deliverable 1.2 of the Esperonto Project

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Overview Semantic Web Applications of LT  Annotation of Web Documents with Ontology- based Metadata (Knowledge Markup)  Ontology Learning through Text Mining from Annotated Corpora Integration of Annotations  Use of Different Tools  Use of Different Knowledge Sources Motivations

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Overview … Linguistic and Semantic Annotations  Linguistic: e.g. PoS, Lemma, Phrase Structure  Semantic: e.g. Concepts, Relations, Events Objectives: Integration of… … Annotations from Different Resources  e.g. Different Domains … Annotations in Different Formats  e.g. from Different Tools

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Knowledge Markup and Knowledge Extraction Text/Speech/Image-Video Text/Speech/Media Mining Concepts, Relations, Events Linguistic and Media Analysis Linguistic, Low-level Image and Semantic Annotations

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Annotations Projects, Tools and Resources Projects  MuchMore:Cross-lingual Information Retrieval, Medical Domain  Mumis: Content-based Multimedia Retrieval, Soccer Domain Tools and Resources  MuchMore:Integration of Shprot (TnT, Mmorph, Chunkie) with Semantic Tagging Tools (UMLS – Medical Semantic Resource, EuroWordNet)  Mumis:Schug, Integration of SPPC with Rule-based Chunking and Shallow Dependency Analysis, Event Structure (Mumis Soccer Ontology)

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information document sentence umlsterms xrceterms ewnterms semrels gramrels chunks text cui sense umlsterm xrceterm ewnterm semrel gramrel chunk token to id from to offset from id code type term2 term1 id pref tui code pref tui type id to id from type id pos lemma msh cui msh Annotations MuchMore

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Balint syndrom is a combination of symptoms including simultanagnosia, a disorder of spatial and object-based attention, disturbed spatial perception and representation, and optic ataxia resulting from bilateral parieto-occipital lesions. Balint syndrom is a combination of symptoms... spatial perception and representation... > Annotations MuchMore: Linguistic

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Balint syndrom is a combination of symptoms including simultanagnosia, a disorder of spatial and object-based attention, disturbed spatial perception and representation, and optic ataxia resulting from bilateral parieto-occipital lesions. Annotations MuchMore: Semantic

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information DocumentSentenceParagraph PP VG NP NE AP AdvP Subord-Clause Annotations Mumis

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information AP TYPE STRUK AP_AGR STRING AP_HEAD W Annotations Mumis

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information VG TYPE VG_SUBCAT_STEM STRING KLAMMER VG_STRG SENT_STRING VG_TYPE VG_AGR STRUK VG_HEAD... VG W Annotations Mumis

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information W INFL STRING CLAUSE_PRED_SUBCAT CLAUSE_PP_LIST... CLAUSE_TYPE TC CLAUSE_SUBJ CLAUSE_PRED_STRG STEM TYPE SENT_STRING CLAUSE_VG_LIST CLAUSE_PRED_AGR CLAUSE POS CLAUSE_PP_ADJUNKT CLAUSE_NP_LIST Annotations Mumis

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Annotations Integration Objectives  Integrate Linguistic and Semantic Information from the MuchMore and Mumis Annotations, e.g.  Enrich MuchMore: Head/Complement of Chunks, Clauses  Enrich Mumis: EuroWordNet, Medical Ontology Approach  MuchMore uses Multilayered Annotation over Indexes (‘standoff’)  Introduce Mumis Annotations as Additional Layers Problems  Integration of Overlapping Layers (i.e. Additional Attributes)

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Industrie, Handel und Dienstleistungen werden in der ersten Liste aufgeführt, wobei die in Klammern gesetzten Zahlen auf die Mutterfirmen hinweisen. (Industry, trade and services are mentioned in the first list, in which numbers within brackets point to parent companies.) …. Annotations Mumis: Linguistic

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Ein Freistoss von Christian Ziege aus 25 Metern geht über das Tor. (A 25-meter free-kick by Christian Ziege goes over the goal.) Annotations Mumis: Semantic

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Conclusions MuchMore and MUMIS Work in Progress  Development of Compatibility between the Formats  Full Integration of the Formats Possible Future Work  Integration of the Formats on a more Abstract Level, i.e. by Use of Data Categories as Specified by ISO/TC37/SC4  Separating Text Data from Annotation. Multiple pointing to Annotations.  Extension to Multimedia

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Esperonto: Overview Applications Router Agent XMLDAMLOILRDF(S) Certificate Workbench Maintenance Multilinguality Reengineering Mapping Ontology Repository Service Tagger/ Wrapper Web Server Provider Dynamic Information Provider Static Information Provider Multimedia Data Provider Multilingual NL Understanding World Wide Web Semantic Web Visualization Service Provider SemASP Multilingual NL Generation Portal Agent Tagger/ Wrapper Tagger/ Wrapper Tagger/ Wrapper Router Semantic indices, Concept instances

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Ontologies (Classification) Lassila and McGuinness [Lassila and McGuinness, 2001] categorization

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Ontologies(classification) Van Heijst and colleagues [Van Heijst et al., 1997] categorization

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Knowledge Architecture

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Esperonto Knowledge Architecture

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Abstracting over Linguistic Information in Esperonto Ontology_1: NP Head:N Mod: {Adj*,PP?} Spec: {Det? PossPron} Type: {RefNP, ProNP, DateNP,etc.} Ontology_2: PP Head: Prep Type: {LocPP,DatePP, etc.} Comp: NP Ontology_3: Grammatical Functions Subject, Object, Ind. Object NP Adjunct, PP Adjunct, etc.. Ontology_4: Dependencies Head Comp Mod Spec

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information From WordNet to EuroWordNet voorwerp {object} lepel {spoon} werktuig{tool} tas {bag} bak {box} blok {block} lichaam {body} Wordnet1.5Dutch Wordnet bag spoon box object natural object (an object occurring naturally) artifact, artefact (a man-made object) instrumentality blockbody container device implement tool instrument

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Relations of EWN to Top-Level Ontologies ReferenceOntologyClasses: BOX ContainerProduct; SolidTangibleThing Language-Neutral Ontology object box container box container WordNet1.5 Language-Specific Wordnets doos voorwerp Dutch Wordnet EuroWordNet Top-Ontology: Form: Cubic Function: Contain Origin: Artifact Composition: Whole

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Framenet: Events in Syntactic Context  events  artifacts, built objects  natural kinds, parts and aggregates  institutions, belief systems, practices  space, time, location, motion  etc. Let us take a commercial transaction as an example of an event. The following (partial) wordlist is showing lexical realization of the event: Verbs: pay, spend, cost, buy, sell, charge Nouns:cost, price, payment Adjectives: expensive, cheap

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Semantic and Domain Specific Information in the Simple/Parole Framework semantic frame semantic relations ontology

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Combining Ontological and “Linguistic Ontology” (EWN, Parole/Simple) Torschuss abzieh URL: DFB home page/glossary

Linguistic and Semantic Information for the Semantic Web LREC 2004, ISO Working Group on the Representation of Multimodal Semantic Information Actual Work Including FrameNet for 3 Languages. Including new semantic classes for Adj., Adverbs, Polarity etc. New improved annotation schema for syntactic/Semantic annotation A declarative set of mapping rule Linguistic  Ontology (domain ontologies). The Onto-LT frameowrk (see paper by P. Buitelaar & al at LREC).