© 2004 Goodrich, Tamassia Stacks. © 2004 Goodrich, Tamassia Stacks2 Applications of Stacks Direct applications Delimiter matching Undo sequence in a text.

Slides:



Advertisements
Similar presentations
Stacks.
Advertisements

Queues1 Part-B2 Queues. Queues2 The Queue ADT (§4.3) The Queue ADT stores arbitrary objects Insertions and deletions follow the first-in first-out scheme.
Queues 4/14/2017 5:24 PM 5.2 Queues Queues Dr Zeinab Eid.
Stacks. Queues. Double-Ended Queues. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia.
Stacks. 2 Outline and Reading The Stack ADT (§4.2.1) Applications of Stacks (§4.2.3) Array-based implementation (§4.2.2) Growable array-based stack.
© 2004 Goodrich, Tamassia Stacks. © 2004 Goodrich, Tamassia Stacks2 The Stack ADT (§4.2) The Stack ADT stores arbitrary objects Insertions and deletions.
© 2004 Goodrich, Tamassia Stacks. © 2004 Goodrich, Tamassia Stacks2 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data.
Stacks, Queues, and Deques
Data Structures Lecture 5 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Chapter 3 Stacks.
Stacks. What is a stack? Last-in first-out data structure (LIFO) New objects are placed on top Removal restricted to top object Examples?
Lecture 02 Stacks, Queues, and Recursion
Stacks and QueuesCSC311: Data Structures1 Chapter 5 Stacks and Queues Objectives –Stacks and implementations –Queues and implementations –Double-ended.
Stacks. 2 Outline and Reading The Stack ADT (§2.1.1) Array-based implementation (§2.1.1) Growable array-based stack (§1.5) Java.util.Stack class Java.util.Vector.
Part-B1 Stacks. Stacks2 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data structure An ADT specifies: Data stored Operations.
Part-B1 Stacks. Stacks2 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data structure An ADT specifies: Data stored Operations.
Stacks. 2 Outline and Reading The Stack ADT (§2.1.1) Applications of Stacks (§2.1.1) Array-based implementation (§2.1.1) Growable array-based stack (§1.5)
Stacks1 CS2468 Data Structures and Data Management Lecturer: Lusheng Wang Office: B6422 Phone:
© 2004 Goodrich, Tamassia Queues1. © 2004 Goodrich, Tamassia Queues2 The Queue ADT (§4.3) The Queue ADT stores arbitrary objects Insertions and deletions.
CS2468: Data Structures and Data Management Lecturer: Lusheng Wang Office: B6422 Phone: TA (Assignment.
Stacks. week 2a2 Outline and Reading The Stack ADT (§4.1) Applications of Stacks Array-based implementation (§4.1.2) Growable array-based stack Think.
Stacks. 2 What Are Stacks ? PUSHPOP 0 MAX Underflow Overflow.
Stacks © 2010 Goodrich, Tamassia1Stacks. 2 Abstract Data Types (ADTs)  An abstract data type (ADT) is an abstraction of a data structure  An ADT specifies:
Abstract Data Type (ADT) & Stacks
Stacks and Linked Lists. Abstract Data Types (ADTs) An ADT is an abstraction of a data structure that specifies – Data stored – Operations on the data.
Stacks 1. Stack  What is a stack? An ordered list where insertions and deletions occur at one end called the top. Also known as last-in-first-out (LIFO)
Stack. Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data structure An ADT specifies: Data stored Operations on the data.
Stacks & Queues EECS: Stacks & Queues Stacks April 23, 2017
© 2004 Goodrich, Tamassia Stacks. © 2004 Goodrich, Tamassia Stacks2 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data.
1 Stacks. 2 A stack has the property that the last item placed on the stack will be the first item removed Commonly referred to as last-in, first-out,
Stacks. A stack is a data structure that holds a sequence of elements and stores and retrieves items in a last-in first- out manner (LIFO). This means.
30 May Stacks (5.1) CSE 2011 Winter Stacks2 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data structure An.
STACKS AND QUEUES 1. Outline 2  Stacks  Queues.
Min Chen School of Computer Science and Engineering Seoul National University Data Structure: Chapter 3.
Lecture6: Stacks Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Stacks by Dr. Bun Yue Professor of Computer Science CSCI 3333 Data Structures.
Parasol Lab, Dept. CSE, Texas A&M University
Welcome to CSCE 221 – Data Structures and Algorithms
© 2004 Goodrich, Tamassia Stacks. © 2004 Goodrich, Tamassia Stacks2 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data.
CH 5 : STACKS, QUEUES, AND DEQUES ACKNOWLEDGEMENT: THE SLIDES ARE PREPARED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
Stack. ADS2 Lecture 1010 The Stack ADT (GoTa §5.1) The Stack ADT stores arbitrary objects Insertions and deletions follow the last-in.
1 COMP9024: Data Structures and Algorithms Week Four: Stacks and Queues Hui Wu Session 1, 2016
Click to edit Master text styles Stacks Data Structure.
1 Stacks Abstract Data Types (ADTs) Stacks Application to the analysis of a time series Java implementation of a stack Interfaces and exceptions.
© 2004 Goodrich, Tamassia Stacks. © 2004 Goodrich, Tamassia Stack: Last In First Out (LIFO).–Used in procedure calls, to compute arithmetic expressions.
Stacks Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
© 2004 Goodrich, Tamassia Queues. © 2004 Goodrich, Tamassia Stacks2 The Queue ADT The Queue ADT stores arbitrary objects Insertions and deletions follow.
Stacks 1/25/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H.
Stacks (and Queues).
Stacks 5/2/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Stacks Stacks.
CSCI 3333 Data Structures Stacks.
COMP9024: Data Structures and Algorithms
Stacks.
Stacks 9/12/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H.
Stacks and queues.
Stacks © 2013 Goodrich, Tamassia, Goldwasser Stacks.
Stacks.
Stacks.
Chapter 5 Stacks and Queues 11/28/2018 Stacks.
Stacks 12/7/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H.
Copyright © Aiman Hanna All rights reserved
Recall What is a Data Structure Very Fundamental Data Structures
Stacks.
CS2468: Data Structures and Data Management
Stacks.
Computing Spans Given an an array X, the span S[i] of X[i] is
Lecture 8: Stacks, Queues
Stacks and Linked Lists
Presentation transcript:

© 2004 Goodrich, Tamassia Stacks

© 2004 Goodrich, Tamassia Stacks2 Applications of Stacks Direct applications Delimiter matching Undo sequence in a text editor Chain of method calls in the Java Virtual Machine Indirect applications Auxiliary data structure for algorithms Component of other data structures

© 2004 Goodrich, Tamassia Stacks3 The Stack ADT (§4.2) The Stack ADT stores arbitrary objects Insertions and deletions follow the last-in first-out scheme Think of a spring-loaded plate dispenser Main stack operations: push(object): inserts an element object pop(): removes and returns the last inserted element Auxiliary stack operations: object top(): returns the last inserted element without removing it integer size(): returns the number of elements stored boolean isEmpty(): indicates whether no elements are stored

© 2004 Goodrich, Tamassia Stacks4 Stack Interface in Java Java interface corresponding to our Stack ADT Requires the definition of class EmptyStackException Different from the built-in Java class java.util.Stack public interface Stack { public int size(); public boolean isEmpty(); public Object top() throws EmptyStackException; public void push(Object o); public Object pop() throws EmptyStackException; }

© 2004 Goodrich, Tamassia Stacks5 Exceptions Attempting the execution of an operation of ADT may sometimes cause an error condition, called an exception Exceptions are said to be “thrown” by an operation that cannot be executed In the Stack ADT, operations pop and top cannot be performed if the stack is empty Attempting the execution of pop or top on an empty stack throws an EmptyStackException

© 2004 Goodrich, Tamassia Stacks6 Array-based Stack A simple way of implementing the Stack ADT uses an array We add elements from left to right A variable keeps track of the index of the top element S 012 t … Algorithm size() return t + 1 Algorithm pop() if isEmpty() then throw EmptyStackException else t  t  1 return S[t + 1]

© 2004 Goodrich, Tamassia Stacks7 Array-based Stack (cont.) The array storing the stack elements may become full A push operation will then throw a FullStackException Limitation of the array- based implementation Not intrinsic to the Stack ADT S 012 t … Algorithm push(o) if t = S.length  1 then throw FullStackException else t  t + 1 S[t]  o

© 2004 Goodrich, Tamassia Stacks8 Stack using a Singly Linked List We can implement a stack with a singly linked list The top element is stored at the first node of the list The space used is O(n) and each operation of the Stack ADT takes O(1) time  t nodes elements

© 2004 Goodrich, Tamassia Stacks9 Parentheses Matching Each “(”, “{”, or “[” must be paired with a matching “)”, “}”, or “[” correct: ( )(( )){([( )])} correct: ((( )(( )){([( )])} incorrect: )(( )){([( )])} incorrect: ({[ ])} incorrect: (

© 2004 Goodrich, Tamassia Stacks10 Parentheses Matching Algorithm Algorithm ParenMatch( X, n ) : Input: An array X of n tokens, each of which is either a grouping symbol, a variable, an arithmetic operator, or a number Output: true if and only if all the grouping symbols in X match Let S be an empty stack for i = 0 to n - 1 do if X [ i ] is an opening grouping symbol then S. push (X [ i ] ) else if X [ i ] is a closing grouping symbol then if S. isEmpty () then return false { nothing to match with } if S. pop () does not match the type of X [ i ] then return false { wrong type } if S. isEmpty () then return true { every symbol matched } else return false { some symbols were never matched }

© 2004 Goodrich, Tamassia Stacks11 HTML Tag Matching The Little Boat The storm tossed the little boat like a cheap sneaker in an old washing machine. The three drunken fishermen were used to such treatment, of course, but not the tree salesman, who even as a stowaway now felt that he had overpaid for the voyage. Will the salesman die? What color is the boat? And what about Naomi? The Little Boat The storm tossed the little boat like a cheap sneaker in an old washing machine. The three drunken fishermen were used to such treatment, of course, but not the tree salesman, who even as a stowaway now felt that he had overpaid for the voyage. 1. Will the salesman die? 2. What color is the boat? 3. And what about Naomi? For fully-correct HTML, each should pair with a matching

© 2004 Goodrich, Tamassia Stacks12 Tag Matching Algorithm Is similar to parentheses matching: import java.util.StringTokenizer; import datastructures.Stack; import datastructures.NodeStack; import java.io.*; /** Simpli.ed test of matching tags in an HTML document. */ public class HTML { /** Nested class to store simple HTML tags */ public static class Tag { String name; // The name of this tag boolean opening; // Is true i. this is an opening tag public Tag() { // Default constructor name = ""; opening = false; } public Tag(String nm, boolean op) { // Preferred constructor name = nm; opening = op; } /** Is this an opening tag? */ public boolean isOpening() { return opening; } /** Return the name of this tag */ public String getName() {return name; } } /** Test if every opening tag has a matching closing tag. */ public boolean isHTMLMatched(Tag[ ] tag) { Stack S = new NodeStack(); // Stack for matching tags for (int i=0; (i<tag.length) && (tag[i] != null); i++) { if (tag[i].isOpening()) S.push(tag[i].getName()); // opening tag; push its name on the stack else { if (S.isEmpty()) // nothing to match return false; if (!((String) S.pop()).equals(tag[i].getName())) // wrong match return false; } if (S.isEmpty()) return true; // we matched everything return false; // we have some tags that never were matched }

© 2004 Goodrich, Tamassia Stacks13 Tag Matching Algorithm, cont. public final static int CAPACITY = 1000;// Tag array size upper bound /* Parse an HTML document into an array of html tags */ public Tag[ ] parseHTML(BufferedReader r) throws IOException { String line;// a line of text booleaninTag = false;// true iff we are in a tag Tag[ ] tag = new Tag[CAPACITY]; // our tag array (initially all null) int count = 0;// tag counter while ((line = r.readLine()) != null) { // Create a string tokenizer for HTML tags (use as delimiters) StringTokenizer st = new StringTokenizer(line,"<> \t",true); while (st.hasMoreTokens()) { String token = (String) st.nextToken(); if (token.equals("<")) // opening a new HTML tag inTag = true; else if (token.equals(">")) // ending an HTML tag inTag = false; else if (inTag) { // we have a opening or closing HTML tag if ( (token.length() == 0) | | (token.charAt(0) != ’/’) ) tag[count++] = new Tag(token, true); // opening tag else // ending tag tag[count++] = new Tag(token.substring(1), false); // skip the } // Note: we ignore anything not in an HTML tag } return tag; // our array of tags } /** Tester method */ public static void main(String[ ] args) throws IOException { BufferedReader stdr;// Standard Input Reader stdr = new BufferedReader(new InputStreamReader(System.in)); HTML tagChecker = new HTML(); if (tagChecker.isHTMLMatched(tagChecker.parseHTML(stdr))) System.out.println("The input file is a matched HTML document."); else System.out.println("The input file is not a matched HTML document."); }

© 2004 Goodrich, Tamassia Stacks14 Computing Spans (not in book) We show how to use a stack as an auxiliary data structure in an algorithm Given an array X, the span S[i] of X[i] is the maximum number of consecutive elements X[j] immediately preceding X[i] and such that X[j]  X[i] Spans have applications to financial analysis E.g., stock at 52-week high X S

© 2004 Goodrich, Tamassia Stacks15 Quadratic Algorithm Algorithm spans1(X, n) Input array X of n integers Output array S of spans of X # S  new array of n integers n for i  0 to n  1 don s  1n while s  i  X[i  s]  X[i] 1  2  …  (n  1) s  s  11  2  …  (n  1) S[i]  s n return S 1 Algorithm spans1 runs in O(n 2 ) time

© 2004 Goodrich, Tamassia Stacks16 Computing Spans with a Stack We keep in a stack the indices of the elements visible when “looking back” We scan the array from left to right Let i be the current index We pop indices from the stack until we find index j such that X[i]  X[j] We set S[i]  i  j We push x onto the stack

© 2004 Goodrich, Tamassia Stacks17 Linear Algorithm Algorithm spans2(X, n) # S  new array of n integers n A  new empty stack 1 for i  0 to n  1 don while (  A.isEmpty()  X[A.top()]  X[i] ) don A.pop()n if A.isEmpty() then n S[i]  i  1n else S[i]  i  A.top()n A.push(i)n return S 1 Each index of the array Is pushed into the stack exactly one Is popped from the stack at most once The statements in the while-loop are executed at most n times Algorithm spans2 runs in O(n) time