5th International Terra Cognita Workshop In Conjunction with the 11th International Semantic Web Conference Boston, USA, November 12, 2012 Querying Linked.

Slides:



Advertisements
Similar presentations
OGC GeoSPARQL: Standardizing Spatial Query on the Semantic Web
Advertisements

Geospatial semantics research at Ordnance Survey Cathy Dolbear, Paula Engelbrecht, John Goodwin, Glen Hart and Ian Holt.
Mitsunori Ogihara Center for Computational Science
AVATAR: Advanced Telematic Search of Audivisual Contents by Semantic Reasoning Yolanda Blanco Fernández Department of Telematic Engineering University.
The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE2008) Department of Electrical and Computer Engineering
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
Representing Contextual Aspects of Data WP2 - Andreas Harth 1st year review Luxembourg, December 2011.
1 A Description Logic with Concrete Domains CS848 presentation Presenter: Yongjuan Zou.
Geospatial data in the Semantic Web stSPARQL Presenter: Kostis Kyzirakos Extended Semantic Web Conference 2012.
December 2, 2013 Thessaloniki, Greece GNORASI WORKSHOP Charalampos Doulaverakis CERTH/ITI Knowledge and processing algorithms for remote sensing data Reasoning.
Dave Kolas, BBN Technologies Terra Cognita 08 Karlsruhe, Germany 10/26/08 1 Supporting Spatial Semantics with SPARQL.
UNCERTML - DESCRIBING AND COMMUNICATING UNCERTAINTY Matthew Williams
GEOSPARQL IN PARLIAMENT Terra Cognita Dave Kolas November 12, 2012.
Linked Sensor Data Harshal Patni, Cory Henson, Amit P. Sheth Ohio Center of Excellence in Knowledge enabled Computing (Kno.e.sis) Wright State University,
Geographical Service: Gianluca Correndo, Manuel Salvadores, Yang Yang, Nicholas Gibbins, Nigel Shadbolt A compass for the Web of Data.
Sensemaking and Ground Truth Ontology Development Chinua Umoja William M. Pottenger Jason Perry Christopher Janneck.
Semantic Location Based Services for Smart Spaces Kostas Kolomvatsos, Vassilis Papataxiarhis, Vassileios Tsetsos P ervasive C omputing R esearch G roup.
ReQuest (Validating Semantic Searches) Norman Piedade de Noronha 16 th July, 2004.
CHOROS: IMPROVING THE PERFORMANCE OF QUALITATIVE SPATIAL REASONING IN OWL Nikolaos Mainas, Euripides G.M. Petrakis Technical University Of Crete (TUC),
Martin Doerr, Gerald Hiebel, Institute of Computer Science
Background in geospatial data modeling Presenter: Manolis Koubarakis Extended Semantic Web Conference 2012.
Špindlerův Mlýn, Czech Republic, SOFSEM Semantically-aided Data-aware Service Workflow Composition Ondrej Habala, Marek Paralič,
1. Motivation Knowledge in the Semantic Web must be shared and modularly organised. The semantics of the modular ERDF framework has been defined model.
Georgios Christodoulou, Euripides G.M. Petrakis, and Sotirios Batsakis Department of Electronic and Computer Engineering, Technical University of Crete.
Implemented Systems Presenter: Manos Karpathiotakis Extended Semantic Web Conference 2012.
TOWARDS INTEROPERABILITY IN TRACKING SYSTEMS: AN ONTOLOGY-BASED APPROACH Juan Gómez Romero Miguel A. Patricio Jesús García José M. Molina Applied A.I.
EXCS Sept Knowledge Engineering Meets Software Engineering Hele-Mai Haav Institute of Cybernetics at TUT Software department.
SemantAqua: A Semantically-Enabled Provenance-Aware Water Quality Portal Evan W. Patton, Ping Wang, Jin Guang Zheng, Timothy Lebo, Li Ding, Joanne Luciano,
Ontologies for the Integration of Geospatial Data Michael Lutz Workshop: Semantics and Ontologies for GI Services, 2006 Paper: Lutz et al., Overcoming.
Database Support for Semantic Web Masoud Taghinezhad Omran Sharif University of Technology Computer Engineering Department Fall.
MPEG-7 Interoperability Use Case. Motivation MPEG-7: set of standardized tools for describing multimedia content at different abstraction levels Implemented.
Ontology-based and Rule-based Policies: Toward a Hybrid Approach to Control Agents in Pervasive Environments The Semantic Web and Policy Workshop – ISWC.
Boris Villazón-Terrazas, Ghislain Atemezing FI, UPM, EURECOM, Introduction to Linked Data.
Dimitrios Skoutas Alkis Simitsis
Developing “Geo” Ontology Layers for Web Query Faculty of Design & Technology Conference David George, Department of Computing.
SPARQL Query Graph Model (How to improve query evaluation?) Ralf Heese and Olaf Hartig Humboldt-Universität zu Berlin.
UNCERTML - DESCRIBING AND COMMUNICATING UNCERTAINTY WITHIN THE (SEMANTIC) WEB Matthew Williams
A Classification of Schema-based Matching Approaches Pavel Shvaiko Meaning Coordination and Negotiation Workshop, ISWC 8 th November 2004, Hiroshima, Japan.
1 Advanced Semantic Technologies Prof. Deborah McGuinness and Dr. Patrice Seyed CSCI CSCI ITWS ITWS TA: Justin.
A Mechanized Model for CAN Protocols Context and objectives Our mechanized model Results Conclusions and Future Works Francesco Bongiovanni and Ludovic.
Oracle Database 11g Semantics Overview Xavier Lopez, Ph.D., Dir. Of Product Mgt., Spatial & Semantic Technologies Souripriya Das, Ph.D., Consultant Member.
U.S. Department of the Interior U.S. Geological Survey A Consideration of Geospatial Feature Formation in Linked Open Vocabularies Workshop on Linked Open.
TWC-SWQP: A Semantically-Enabled Provenance-Aware Water Quality Portal Ping Wang, Jin Guang Zheng, Linyun Fu, Evan W. Patton, Timothy Lebo, Li Ding, Joanne.
Data models, Query Languages, Implemented Systems and Applications of Linked Geospatial Data Dept. of Informatics and Telecommunications National and Kapodistrian.
Conclusions Presenter: Manolis Koubarakis Extended Semantic Web Conference 2012.
An Introduction to Linked Geospatial Data Manolis Koubarakis Web Intelligence Summer School 2015 Dept. of Informatics and.
THE SEMANTIC WEB By Conrad Williams. Contents  What is the Semantic Web?  Technologies  XML  RDF  OWL  Implementations  Social Networking  Scholarly.
Geospatial data in RDF: stSPARQL and GeoSPARQL Knowledge Technologies Dept. of Informatics and Telecommunications National and Kapodistrian University.
Building Knowledge about Buildings Matt Young and Eyal Amir University of Illinois, Urbana-Champaign.
Semantic Water Quality Portal Jin Guang Zheng and Ping Wang Tetherless World Constellation.
Semantics in Web Service Composition for Risk Management Michael Lutz European Commission – DG Joint Research Centre Ispra, Italy EcoTerm IV, Vienna,
1 Integrating Databases into the Semantic Web through an Ontology-based Framework Dejing Dou, Paea LePendu, Shiwoong Kim Computer and Information Science,
Ontology Technology applied to Catalogues Paul Kopp.
Linked Open Data for European Earth Observation Products Carlo Matteo Scalzo CTO, Epistematica epistematica.
Of 24 lecture 11: ontology – mediation, merging & aligning.
1 The LEO Project Linked Open Earth Observation Data for Precision Farming Presenter: Manolis Koubarakis (UoA ) 1.
SEMANTIC WEB Presented by- Farhana Yasmin – MD.Raihanul Islam – Nohore Jannat –
Panel: OWL Leaves the Nest Knowledge Integration for Ubiquitous Agents Harry Chen Image Matters LLC First International.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Linking Ontologies to Spatial Databases
Department of Geography Jeon-Young Kang · Yi Yang
Big Linked Geospatial Data and its Application to Earth Observation
Representation and Querying of Linked Geospatial Data (ReQuLGD)
Big Linked Geospatial Data and its Application to Earth Observation
Query Rewriting Framework for Spatial Data
TELEIOS Virtual Observatory Infrastructure for Earth Observation Data
Building Virtual Earth Observatories Using Semantic Web Technologies
Tools for Linked Geospatial Data Exploiting Open Data
Ontology-Based Approaches to Data Integration
Information Networks: State of the Art
Presentation transcript:

5th International Terra Cognita Workshop In Conjunction with the 11th International Semantic Web Conference Boston, USA, November 12, 2012 Querying Linked Geospatial Data with Incomplete Information Charalampos Nikolaou Manolis Koubarakis Department of Informatics & Telecommunications National and Kapodistrian, University of Athens

Outline 2 Linked geospatial data (motivation) Querying complete geospatial information (exact geometries) Querying qualitative geospatial information Querying incomplete geospatial information The RDF i framework Future work

Motivation 3 1.GeoNames ontology/ ontology/ 2.LinkedGeoData (OpenStreetMap) Administrative geography of Great Britain (Ordnance Survey) Greek Administrative Geography Corine Land Cover of Greece Global Administrative Areas (GADM) DBpedia Linked geospatial data

Motivation 4 over 9.5 million geometries (points, linestrings, polygons)

Motivation (cont’d) 5 Earth observation – National Observatory of Athens (NOA) Fire monitoring and burnt scar mapping Risk assessment Exploitation

Earth observation – German Aerospace Center (DLR) Management of environmental disasters (oil spills, tsunamis, floods, etc.) Land use and regional/urban planning Motivation (cont’d) 6

noa:hotspot1 7 NOA’s representation of hotspots ( , )

8 NOA’s representation of hotspots (cont’d) Representation using stRDF noa:hotspot1 rdf:type noa:Hotspot. noa:fire1 rdf:type noa:Fire. noa:hotspot1 noa:correspondsTo noa:fire1. noa:fire1 noa:occuredIn noa:region1. noa:region1 strdf:hasGeometry "POINT( )"^^strdf:WKT. Encoding of geometries using RDF literas in WKT format (OGC standard)

9 NOA’s representation of hotspots (cont’d) Querying using stSPARQL Find all fires and hotspots inside Rethymno SELECT ?f ?h WHERE { ?h rdf:type noa:Hotspot ; noa:correspondsTo ?f. ?f rdf:type noa:Fire ; noa:occuredIn ?r. ?r strdf:hasGeometry ?rgeo. gag:Rethymno strdf:hasGeometry ?rethGeo. FILTER (strdf:contains(?rethGeo, ?rgeo)) } Greek Administrative Geography Spatial filtering

gag:Rethymno 10 Extending the previous example with topological information gag:Rethymno rdf:type gag:Perfecture.

noa:region1 gag:Mylopotamos 11 Extending the previous example with topological information gag:Rethymno gag:Rethymno rdf:type gag:Perfecture. gag:Mylopotamos rdf:type gag:Municipality. gag:Rethymno geo:sfContains gag:Mylopotamos. gag:Mylopotamos geo:sfContains noa:region1. Topology vocabulary extension of GeoSPARQL

Extending the previous example with topological information (cont’d) Querying using GeoSPARQL Find all fires and hotspots inside Rethymno SELECT ?f ?h WHERE { ?h rdf:type noa:Hotspot ; noa:correspondsTo ?f. ?f rdf:type noa:Fire ; noa:occuredIn ?r. gag:Rethymno geo:sfContains ?r. } 12 Topology vocabulary extension of GeoSPARQL

noa:hotspot1 noa:fire1 _region1 13 NOA’s representation of hotspots (revisited) Incomplete information

NOA’s representation of hotspots (revisited) Representation using RDF i noa:hotspot1 rdf:type noa:Hotspot. noa:fire1 rdf:type noa:Fire. noa:hotspot1 noa:correspondsTo noa:fire1. noa:fire1 noa:occuredIn _region1. _region1 geo:sfWithin "POLYGON(( , , , , )); "^^strdf:geometry e-literal Qualitative spatial constraint RCC-8 14

Visualization of a certainty query 15

Certainty queries Find all fires that have certainly occurred inside the rectangle defined in WKT as POLYGON(( , , , , )) CERTAIN SELECT ?F WHERE { ?F rdf:type noa:Fire ; noa:occuredIn ?R. FILTER(geof:sfWithin(?R, "POLYGON(( , , , , ))")) } New (modal) operator 16 New topological operator

noa:fire1 gag:Mylopotamos 17 Extending the previous example with topological information gag:Rethymno gag:Rethymno rdf:type gag:Perfecture. gag:Mylopotamos rdf:type gag:Municipality. gag:Mylopotamos geo:sfWithin gag:Rethymno. _region1 geo:sfWithin "POLYGON(( ))"^^strdf:WKT _region1 POLYGON(( ))

noa:fire1 gag:Mylopotamos 18 Extending the previous example with topological information gag:Rethymno gag:Rethymno rdf:type gag:Perfecture. gag:Mylopotamos rdf:type gag:Municipality. gag:Mylopotamos geo:sfWithin gag:Rethymno. _region1 geo:sfWithin "POLYGON(( ))"^^strdf:WKT _region1 POLYGON(( )) Beyond stSPARQL and the topology vocabulary extension of GeoSPARQL

Certainty queries Find all fires that have certainly occurred inside Rethymno CERTAIN SELECT ?F WHERE { ?F rdf:type noa:Fire ; noa:occuredIn ?R. FILTER(geof:sfWithin(?R, gag:Rethymno)) } 19

20 gag:Mylopotamos geo:sfWithin gag:Rethymno. gag:Mylopatamos strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. gag:Rethymno strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. _region1 geo:sfWithin "POLYGON(( ))"^^strdf:WKT DATABASEDATABASE Vocabulary translation Qualitative spatial reasoning gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno _region1 geo:sfWithin "POLYGON(( ))" _region1 geo:sfWithin gag:Mylopotamos strdf:Inside("POLYGON(( ))", "POLYGON(( ))") "POLYGON(( ))" geo:sfWithin "POLYGON(( ))" Combined algorithm Combined algorithm Computing the answer Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot

21 gag:Mylopotamos geo:sfWithin gag:Rethymno. gag:Mylopatamos strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. gag:Rethymno strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. _region1 geo:sfWithin "POLYGON(( ))"^^strdf:WKT DATABASEDATABASE Vocabulary translation Qualitative spatial reasoning gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno _region1 geo:sfWithin "POLYGON(( ))" _region1 geo:sfWithin gag:Mylopotamos strdf:Inside("POLYGON(( ))", "POLYGON(( ))") "POLYGON(( ))" geo:sfWithin "POLYGON(( ))" Combined algorithm Combined algorithm Computing the answer Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot

22 gag:Mylopotamos geo:sfWithin gag:Rethymno. gag:Mylopatamos strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. gag:Rethymno strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. _region1 geo:sfWithin "POLYGON(( ))"^^strdf:WKT DATABASEDATABASE Vocabulary translation Qualitative spatial reasoning gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno _region1 geo:sfWithin "POLYGON(( ))" _region1 geo:sfWithin gag:Mylopotamos strdf:Inside("POLYGON(( ))", "POLYGON(( ))") "POLYGON(( ))" geo:sfWithin "POLYGON(( ))" Combined algorithm Combined algorithm Computing the answer Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot

23 gag:Mylopotamos geo:sfWithin gag:Rethymno. gag:Mylopatamos strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. gag:Rethymno strdf:hasGeometry "POLYGON(( ))"^^strdf:WKT. _region1 geo:sfWithin "POLYGON(( ))"^^strdf:WKT DATABASEDATABASE Vocabulary translation Qualitative spatial reasoning gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno _region1 geo:sfWithin "POLYGON(( ))" _region1 geo:sfWithin gag:Mylopotamos strdf:Inside("POLYGON(( ))", "POLYGON(( ))") "POLYGON(( ))" geo:sfWithin "POLYGON(( ))" Combined algorithm Combined algorithm Computing the answer Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot

The Framework RDF i Extension of RDF with incomplete information New kind of literals (e-literals) for each datatype – Property values that exist but are unknown or partially known Partial knowledge: captured by constraints (appropriate constraint language L) RDF graphs extended to RDF i databases: pair (G, φ) G: RDF graph with e-literals φ: quantifier-free formula of L Charalampos Nikolaou and Manolis Koubarakis Incomplete Information in RDF arXiv: v2 [cs.DB] 18 Sep

{ } "x≥7 ∧ x≤13 ∧ y≥9 ∧ y≤18" RDF i Semantics hotspot1 type Hotspot. fire1 type Fire. hotspot1 correspondsTo fire1. fire1 occuredIn _region1. _region1 geo:sfWithin "x≥6 ∧ x≤23 ∧ y≥8 ∧ y≤19" hotspot1 type Hotspot. fire1 type Fire. hotspot1 correspondsTo fire1. fire1 occuredIn. "x≥8 ∧ x≤14 ∧ y≥10 ∧ y≤18""x≥9 ∧ x≤14 ∧ y≥10 ∧ y≤18""x≥10 ∧ x≤21 ∧ y≥10 ∧ y≤15" { G 1, G 2, G 3, G 4,... } corresponds to { G 1, G 2, G 3 } { G 1, G 2 } { G 1 } set of RDF graphs (possible worlds) set of RDF graphs (possible worlds)

Certain answers CERTAIN SELECT ?F WHERE { ?F rdf:type noa:Fire ; noa:occuredIn ?R. FILTER(geof:sfWithin(?R, "x≥2 ∧ x≤28 ∧ y≥4 ∧ y≤22")) } Cert(q) = q(G 1 ) ⋂ q(G 2 ) ⋂ q(G 3 ) ⋂ q(G 4 ) ⋂...

Certain answers CERTAIN SELECT ?F WHERE { ?F rdf:type noa:Fire ; noa:occuredIn ?R. FILTER(geof:sfWithin(?R, "x≥2 ∧ x≤28 ∧ y≥4 ∧ y≤22")) } Cert(q) = q(G 1 ) ⋂ q(G 2 ) ⋂ q(G 3 ) ⋂ q(G 4 ) ⋂... How the certain answer is computed?

The Framework RDF i (cont’d) Formal semantics for RDF i and SPARQL query evaluation Representation Systems: – CONSTRUCT with AUF graph patterns – CONSTRUCT with well-designed graph patterns Certain Answer: semantics, algorithms, computational complexity when L is a language of spatial topological constraints Implementation in the system Strabon has started with L being PCL (topological constraints between variables and polygon constants) Charalampos Nikolaou and Manolis Koubarakis Incomplete Information in RDF arXiv: v2 [cs.DB] 18 Sep

Future work How do we implement querying with topological relations in RDF stores for stSPARQL/GeoSPARQL? How do we implement certainty queries for RDF i ? DL reasoners with RCC-8 support offer topological reasoning already (implementing a path-consistency algorithm) – RacerPro [ Möller et al. ], [ Wessel-Möller, JAPLL’09 ] – PelletSpatial [ Stocker-Sirin, OWLED’09 ] RDF i goes beyond – Reason about qualitative and quantitative geospatial information – Can be used in other application domains (e.g., temporal)

Thank you for your attention! Questions?

References [Weiming Liu et al.] Weiming Liu, Sheng-sheng Wang, Sanjiang Li, Dayou Liu: Solving Qualitative Constraints Involving Landmarks. CP 2011: [Wessel-Möller, JAPLL’09 ] Michael Wessel, Ralf Möller: Flexible software architectures for ontology-based information systems. J. Applied Logic (JAPLL) 7(1):75-99 (2009) [ Stocker-Sirin, OWLED‘09 ] Markus Stocker, Evren Sirin: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine. OWLED 2009