Properties of the Binomial Probability Distributions 1- The experiment consists of a sequence of n identical trials 2- Two outcomes (SUCCESS and FAILURE.

Slides:



Advertisements
Similar presentations
AP Statistics 51 Days until the AP Exam
Advertisements

Stat 245 Recitation 13 11/1/2007 EA :30am TA: Dongmei Li.
Chapter 12 Probability © 2008 Pearson Addison-Wesley. All rights reserved.
Chapter 3 Probability Distribution. Chapter 3, Part A Probability Distributions n Random Variables n Discrete Probability Distributions n Binomial Probability.
1 1 Slide © 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide 2009 University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 5: Probability Distributions: Discrete Probability Distributions.
Discrete Probability Distributions Random variables Discrete probability distributions Expected value and variance Binomial probability distribution.
Bernoulli Distribution
1 1 Slide © 2006 Thomson/South-Western Chapter 5 Discrete Probability Distributions n Random Variables n Discrete Probability Distributions.
Chapter 5 Section 2: Binomial Probabilities. trial – each time the basic experiment is performed.
The Binomial Distribution
McGraw-Hill Ryerson Copyright © 2011 McGraw-Hill Ryerson Limited. Adapted by Peter Au, George Brown College.
Multivariate Probability Distributions. Multivariate Random Variables In many settings, we are interested in 2 or more characteristics observed in experiments.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 5 Discrete Probability Distributions
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning.
Chapter 5 Discrete Probability Distributions n Random Variables n Discrete Probability Distributions n Expected Value and Variance n Binomial Probability.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 5 Discrete Probability Distributions n Random Variables n Discrete.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
1 1 Slide Discrete Probability Distributions (Random Variables and Discrete Probability Distributions) Chapter 5 BA 201.
Section 15.8 The Binomial Distribution. A binomial distribution is a discrete distribution defined by two parameters: The number of trials, n The probability.
Business and Finance College Principles of Statistics Eng. Heba Hamad 2008.
BINOMIAL DISTRIBUTION Success & Failures. Learning Goals I can use terminology such as probability distribution, random variable, relative frequency distribution,
Chapter 8 Binomial and Geometric Distributions
Variance and Standard Deviation  The variance of a discrete random variable is:  The standard deviation is the square root of the variance.
Discrete Probability Distributions n Random Variables n Discrete Probability Distributions n Expected Value and Variance n Binomial Probability Distribution.
Random Variables. A random variable X is a real valued function defined on the sample space, X : S  R. The set { s  S : X ( s )  [ a, b ] is an event}.
Chapter 01 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance Binomial Probability Distribution.
BIA 2610 – Statistical Methods Chapter 5 – Discrete Probability Distributions.
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
COMP 170 L2 L17: Random Variables and Expectation Page 1.
King Saud University Women Students
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted.
4.1 Binomial Distribution Day 1. There are many experiments in which the results of each trial can be reduced to 2 outcomes.
1 1 Slide University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 5: Probability Distributions:
The Binomial Distribution
Statistics 3502/6304 Prof. Eric A. Suess Chapter 4.
Your 3rd quiz will cover sections a){HHH,HTT,THT,TTH,THH,HTH,HHT,TTT} {0,1,2,3} b) {1/8,3/8,3/8,1/8} d) P(x=2 or x=3)= P(x=2)+P(x=3)=3/8+1/8=1/2.
Example-1: An insurance company sells a 10,000 TRL 1-year term insurance policy at an annual premium of 290 TRL. Based on many year’s information, the.
Section 7.5: Binomial and Geometric Distributions
Properties of the Binomial Probability Distributions 1- The experiment consists of a sequence of n identical trials 2- Two outcomes (SUCCESS and FAILURE.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted.
6.2 BINOMIAL PROBABILITIES.  Features  Fixed number of trials (n)  Trials are independent and repeated under identical conditions  Each trial has.
This is a discrete distribution. Situations that can be modeled with the binomial distribution must have these 4 properties: Only two possible outcomes.
1 BA 275 Quantitative Business Methods Summarizing Quantitative Data The Empirical Rule Experiencing Random Behavior Binomial Experiment Binomial Probability.
1 7.3 RANDOM VARIABLES When the variables in question are quantitative, they are known as random variables. A random variable, X, is a quantitative variable.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 7 Section 5.  Binomial Distribution required just two outcomes (success or failure).  Multinomial Distribution can be used when there are more.
Properties of the Binomial Probability Distributions 1- The experiment consists of a sequence of n identical trials 2- Two outcomes (SUCCESS and FAILURE.
Free Powerpoint Templates ROHANA BINTI ABDUL HAMID INSTITUT E FOR ENGINEERING MATHEMATICS (IMK) UNIVERSITI MALAYSIA PERLIS ROHANA BINTI ABDUL HAMID INSTITUT.
Introduction A probability distribution is obtained when probability values are assigned to all possible numerical values of a random variable. It may.
PROBABILITY AND STATISTICS WEEK 5 Onur Doğan. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately.
Chapter 8 Counting, Probability Distributions, and Further Probability Topics Probability Distributions & Expected Value , 8.2 Multiplication.
Chapter 3 Probability Distribution.  A probability function is a function which assigns probabilities to the values of a random variable.  Individual.
The binomial probability distribution
Ch3.5 Hypergeometric Distribution
Discrete Random Variables
A game is played using one die
St. Edward’s University
St. Edward’s University
Estimating
3.4 The Binomial Distribution
Discrete Variables Classes
Bernoulli Trials Two Possible Outcomes Trials are independent.
Example: An automobile manufacturer provides vehicles equipped with selected options. Each vehicle is ordered; - with or without an automatic transmission,
Chapter 5 Discrete Probability Distributions
Chapter 11 Probability.
Presentation transcript:

Properties of the Binomial Probability Distributions 1- The experiment consists of a sequence of n identical trials 2- Two outcomes (SUCCESS and FAILURE ) are possible on each trial 3- The probability of success, denoted by p, does not change from trial to trial. Consequently, the probability of failure, denoted by q and equals to 1-p, does not change from trial to trial 4- The trials are independent.

According to a research only 5% of the cigarette smokers enter into a treatment program to help them quit smoking. In a random sample of 200 smokers, let x be the number who enter into a treatment program. A-) Explain why x is a binomial r.v. B-) What is the value of p? Interpret this value. c-) What is the expected value of x? Interpret this value.

Example: Purchase Decision Consider the purchase decisions of the next three customers who enter the clothing store. On the basis of past experience, the store manager estimates the probability that any one customer will make a purchase is 0.30 Q: What is the probability that two of the next three customers will make a purchase?

Example: Hourly Wages According to a study in a certain city 50% of workers between the ages of 25 to 34 years were paid hourly rates of USD 10 or more in the year of Find the probabilities that among 10 randomly selected workers in this category; a-) At least five workers earned wages of USD 10 per hour or more b-) At most five workers earned wages of USD 10 per hour or more c-) Anywhere from 4 to 6 workers earned wages of USD 10 per hour or more

The Sales of Automobiles for 300 days 0 automobile sold54 days 1 automobile sold117 days 2 automobile sold72 days 3 automobile sold42 days 4 automobile sold12 days 5 automobile sold3 days Total:300 days