2001 CAS Seminar on Ratemaking - Las Vegas, Nevada1 CAS Seminar on Ratemaking Las Vegas, Nevada March 11-13, 2001 Fitting to Loss Distributions with Emphasis.

Slides:



Advertisements
Similar presentations
Advanced topics in Financial Econometrics Bas Werker Tilburg University, SAMSI fellow.
Advertisements

1 General Iteration Algorithms by Luyang Fu, Ph. D., State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting LLP 2007 CAS.
Image Modeling & Segmentation
Brief introduction on Logistic Regression
Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests
Maximum Likelihood And Expectation Maximization Lecture Notes for CMPUT 466/551 Nilanjan Ray.
Fundamentals of Data Analysis Lecture 12 Methods of parametric estimation.
Day 6 Model Selection and Multimodel Inference
Model assessment and cross-validation - overview
The General Linear Model. The Simple Linear Model Linear Regression.
Econometrics I Professor William Greene Stern School of Business
Estimation A major purpose of statistics is to estimate some characteristics of a population. Take a sample from the population under study and Compute.
458 Model Uncertainty and Model Selection Fish 458, Lecture 13.
Basics of Statistical Estimation. Learning Probabilities: Classical Approach Simplest case: Flipping a thumbtack tails heads True probability  is unknown.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Statistical inference (Sec. )
Maximum Likelihood We have studied the OLS estimator. It only applies under certain assumptions In particular,  ~ N(0, 2 ) But what if the sampling distribution.
Maximum-Likelihood estimation Consider as usual a random sample x = x 1, …, x n from a distribution with p.d.f. f (x;  ) (and c.d.f. F(x;  ) ) The maximum.
STK 4540Lecture 6 Claim size. The ultimate goal for calculating the pure premium is pricing 2 Pure premium = Claim frequency x claim severity Parametric.
2006 CAS RATEMAKING SEMINAR CONSIDERATIONS FOR SMALL BUSINESSOWNERS POLICIES (COM-3) Beth Fitzgerald, FCAS, MAAA.
March 11-12, 2004 Elliot Burn Wyndham Franklin Plaza Hotel
Risk Modeling of Multi-year, Multi-line Reinsurance Using Copulas
A New Exposure Base for Vehicle Service Contracts – Miles Driven CAS Ratemaking Seminar – Atlanta 2007 March 8, 2007Slide 1 Discussion Paper Presentation.
Likelihood probability of observing the data given a model with certain parameters Maximum Likelihood Estimation (MLE) –find the parameter combination.
Incorporating Catastrophe Models in Property Ratemaking Prop-8 Jeffrey F. McCarty, FCAS, MAAA State Farm Fire and Casualty Company 2000 Seminar on Ratemaking.
Practical GLM Modeling of Deductibles
01/20151 EPI 5344: Survival Analysis in Epidemiology Maximum Likelihood Estimation: An Introduction March 10, 2015 Dr. N. Birkett, School of Epidemiology,
1999 CAS SEMINAR ON RATEMAKING OPRYLAND HOTEL CONVENTION CENTER MARCH 11-12, 1999 MIS-43 APPLICATIONS OF THE MIXED EXPONENTIAL DISTRIBUTION CLIVE L. KEATINGE.
Midland National Life ® Insurance Company North American Company for Life and Health Insurance ® Sammons ® Corporate Markets Group Sammons Securities Company.
2004 CAS RATEMAKING SEMINAR INCORPORATING CATASTROPHE MODELS IN PROPERTY RATEMAKING (PL - 4) ROB CURRY, FCAS.
Relationship between two variables Two quantitative variables: correlation and regression methods Two qualitative variables: contingency table methods.
Toward a unified approach to fitting loss models Jacques Rioux and Stuart Klugman, for presentation at the IAC, Feb. 9, 2004.
Maximum Likelihood Estimation Psych DeShon.
Chapter 12 Continuous Random Variables and their Probability Distributions.
Pricing Excess Workers Compensation 2003 CAS Ratemaking Seminar Session REI-5 By Natalie J. Rekittke, FCAS, MAAA Midwest Employers Casualty Company.
HYPOTHESIS TESTING Distributions(continued); Maximum Likelihood; Parametric hypothesis tests (chi-squared goodness of fit, t-test, F-test) LECTURE 2 Supplementary.
2004 CAS RATEMAKING SEMINAR INCORPORATING CATASTROPHE MODELS IN PROPERTY RATEMAKING (PL - 4) PRICING EARTHQUAKE INSURANCE DAVE BORDER, FCAS, MAAA.
INTRODUCTION TO Machine Learning 3rd Edition
1999 CAS RATEMAKING SEMINAR PRODUCT DEVELOPMENT (MIS - 32) BETH FITZGERALD, FCAS, MAAA.
Overview of Optimization in Ag Economics Lecture 2.
STT : BIOSTATISTICS ANALYSIS Dr. Cuixian Chen Chapter 7: Parametric Survival Models under Censoring STT
5. Maximum Likelihood –II Prof. Yuille. Stat 231. Fall 2004.
Maximum Likelihood Estimation
Université d’Ottawa - Bio Biostatistiques appliquées © Antoine Morin et Scott Findlay :32 1 Logistic regression.
Biostatistics Nonparametric Statistics Class 8 March 14, 2000.
Loss Rating Models: Value Proposition? Brian Ingle, FCAS, MAAA WC-4 Perspectives on Pricing Large Accounts 2006 CAS Ratemaking Seminar Salt Lake City,
Practical GLM Analysis of Homeowners David Cummings State Farm Insurance Companies.
M.Sc. in Economics Econometrics Module I Topic 4: Maximum Likelihood Estimation Carol Newman.
2000 SEMINAR ON REINSURANCE PITFALLS IN FITTING LOSS DISTRIBUTIONS CLIVE L. KEATINGE.
1 Chapter 8: Model Inference and Averaging Presented by Hui Fang.
1 Introduction to Reinsurance Exposure Rating CAS Ratemaking Seminar Session REI-47 March 12, Las Vegas Ira Kaplan
1 Mirage Re Introduction to Experience Rating Joy Takahashi - American Re Brokered Group CAS Ratemaking Seminar Session REI-47 March 12, 2001 Las Vegas,
Information criteria What function fits best? The more free parameters a model has the higher will be R 2. The more parsimonious a model is the lesser.
Chi Square Test for Goodness of Fit Determining if our sample fits the way it should be.
Statistical Methods. 2 Concepts and Notations Sample unit – the basic landscape unit at which we wish to establish the presence/absence of the species.
©Towers Perrin Introduction to Reinsurance Reserving Casualty Loss Reserve Seminar Atlanta, Georgia September 11, 2006 Christopher K. Bozman, FCAS, MAAA.
Nonparametric Statistics
Model Comparison. Assessing alternative models We don’t ask “Is the model right or wrong?” We ask “Do the data support a model more than a competing model?”
Fundamentals of Data Analysis Lecture 11 Methods of parametric estimation.
Linear model. a type of regression analyses statistical method – both the response variable (Y) and the explanatory variable (X) are continuous variables.
Nonparametric Statistics
Probability Theory and Parameter Estimation I
CONCEPTS OF HYPOTHESIS TESTING
STAT120C: Final Review.
Nonparametric Statistics
Goodness-of-Fit Tests
More about Posterior Distributions
Parametric Survival Models (ch. 7)
Sihua Peng, PhD Shanghai Ocean University
Maximum Likelihood We have studied the OLS estimator. It only applies under certain assumptions In particular,  ~ N(0, 2 ) But what if the sampling distribution.
Presentation transcript:

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada1 CAS Seminar on Ratemaking Las Vegas, Nevada March 11-13, 2001 Fitting to Loss Distributions with Emphasis on Rating Variables Farrokh Guiahi, Ph.D., F.C.A.S, A.S.A.

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada2 Fitting distributions to insurance data serves an important function for the purpose of pricing insurance products. The effect of the rating variables upon loss distributions has important implications for underwriting selection. It also provides for a more differentiated rating system. Why?

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada3 Data Methodology Knowledge/Experience of “Curve Fitter” Time Purpose Process of fitting distributions to losses:

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada4 Data – Situation 1 # Loss , ,000, ,500

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada5 Ask questions about the data: Losses in excess of deductible? Losses capped by policy limit? etc. Insurance Data are usually “Incomplete” Left truncated Right Censored Data – Situation 1

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada6 Policy #DeductibleLimit Loss , ,000 10,000, , ,000 41,000 5,000,000 5,000, , ,000 1,000,0004,500 Data – Situation 2

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada7 “The” distribution! Ranking alternative distributions An“overall” measure of fit Akaike’s Information Criterion, AIC AIC =- 2 (maximized log-likelihood) + 2 (number of parameters estimated) Selection of a parametric distribution

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada8 Likelihood Incomplete data Proper specification of the Likelihood Function for data that is “Incomplete” Maximum Likelihood Estimation, MLE Estimation of Model Parameters

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada9 y i : i th loss amount (incurred value) D i : deductible for the i th loss PL i : policy limit for the i th loss f(y i ; ,  ): density function  : primary parameter of interest  : nuisance parameter F(y i ; ,  ): cumulative distribution function Notations

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada10 Case 1: No deductible, and loss below policy limit (neither left truncated nor right censored data) The complete sample case.

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada11 Case 2: A deductible, and loss below policy limit (left truncated data)

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada12 Case 3: No deductible, and loss capped by policy limit (right censored data)

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada13 Case 4: A deductible, and loss capped by policy limit (left truncated and right censored data)

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada14 Likelihood Function

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada15 Iterative solution, “Solver” Initial Parameter Values Convergence Uniqueness Robustness Maximum Likelihood Estimation

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada16 Incorporating rating variables into fitting process Data – Situation 3 Policy #Deduct. Limit Loss Constr. Prot. Occupancy , ,000 10M , , ,000 5M 5M , ,000 1M 4,

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada17 Incorporating rating variables into fitting process Approaches: Subdividing data Using all of data to estimate model parameters simultaneously.

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada18 Relating rating variables to a parameter of the selected loss distribution Rating variables: Quantitative Qualitative Generalized Linear Modeling

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada19 An example: Commercial Loss Fire Data Rating variables: Construction Building Value -- Exposure

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada20 Linear Predictors 4 linear predictors; 4 statistical models: A, B, C, D

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada21

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada22 Estimation of parameters: Lognormal:  and  From:  and  to beta_0, beta-1, beta_2, beta_3 & 

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada23 Assessing the effect of Rating Variables Nested models

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada24 Nested Hypotheses based on Model D Test of Hypothesis

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada25 mydata =PL)) cnst <- data.matrix[,4] C1 <- cnst == 1 C2 <- cnst == 2 d <-D+(D == 0)*1 mu <- b0+b1*log(PL)+b2*C1+b3*C2 Appendix B - Exhibit 2A

2001 CAS Seminar on Ratemaking - Las Vegas, Nevada26 delta1 0)*(y = PL) delta4 0)*(y >= PL) L1 <- dlnorm(z,mu,sigma) L2 <- dlnorm(z,mu,sigma)/(1-plnorm(d,mu,sigma)) L3 <- 1-plnorm(z,mu,sigma) L4 <- (1-plnorm(z,mu,sigma))/(1-plnorm(d,mu,sigma)) logL <-delta1*log(L1)+delta2*log(L2)+delta3*log(L3)+delta4*log(L4) -logL } min.model.D<-ms(~lognormal.model.D(b0,b1,b2,b3,sigma), data=m, start=list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322)) min.model.D value: parameters: b0 b1 b2 b3 sigma formula: ~ lognormal.model.D(b0, b1, b2, b3, sigma) 100 observations call: ms(formula = ~ lognormal.model.D(b0, b1, b2, b3, sigma), data=m, start =list(b0=4.568, b1=0.238, b2=1.068, b3=0.0403, sigma=1.322)) Appendix B - Exhibit 2B