CATALYST HEAT KNIFE FOR GAS GENERATE V.M. Khanaev, Е.S. Borisova and N.N.Kundo Boreskov Institute of catalysis Novosibirsk, Russia.

Slides:



Advertisements
Similar presentations
Chapter 8.1: Describing Chemical reactions
Advertisements

Structure -MATTER.
The Pulse Generator for the Supersonic Flow Structure Control ГЕНЕРАТОР ИМПУЛЬСОВ ДЛЯ УПРАВЛЕНИЯ СТРУКТУРОЙ СВЕРХЗВУКОВОГО ПОТОКА Khristianovich Institute.
Laminar Flame Theory By Eng. Mohamad Okour UINVERSITY OF JORDAN MECHANICAL ENGINEERING DEPARTEMENT.
Integrated Micropower Generator
Laminar Premixed Flames and Diffusion Flames
MAE 5391: Rocket Propulsion Overview of Propulsion Systems
Introduction Hydrogen has been successfully used in industry for decades, but current safety codes and standards must be updated for the situations encountered.
30 th ISTC Japan Workshop on Advanced Catalysis Technologies in Russia Fluidized bed catalytic pyrolysis and gasification of biomass for production of.
Hybrid Propulsion System Basics
Laminar Premixed Flames A flame represents an interface separating the unburned gas from the combustion products. A flame can propagate as in an engine.
Heat transfer in boilers
WARSAW UNIVERSITY OF TECHNOLOGY INSTITUTE OF HEAT ENGINEERING DIVISION OF AEROENGINES 3-D ELECTRICAL CAPACITANCE TOMOGRAPHY FOR FLAME VISUALIZATION Piotr.
Energy in Thermal Processes
1 Catalyst Fundamentals 朱信 Hsin Chu Professor Dept. of Environmental Eng. National Cheng Kung University.
Section 4 -Phase Equilibrium Two-Phase Systems A system is a set of components that are being studied. Within a system, a phase is a region that has the.
LINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
Catalysts Chemical Kinetics “Rates of Reactions”.
Combustion AND Emissions Performance of syngas fuels derived from palm shell and POLYETHYLENE (PE) WASTE VIA CATALYTIC STEAM GASIFICATION Chaouki Ghenai.
MECHANISMS OF HEAT TRANSFER
Winter Jordanian German Academy Feb Governing Equations for Combustion Processes Prepared By: Rasha Odetallah & Fatima Abbadi.
Chapter 3 “Matter – Properties & Change” Adapted from the presentation created by: Stephen L. Cotton.
What is matter? Matter is anything that occupies space and has a mass. Everything you can see, touch, smell or taste in your room is made of matter. Even.
Matter.
MAE 5310: COMBUSTION FUNDAMENTALS
Classification of Matter
Section 3.1 Properties of Matter
Molecular Transport Equations. Outline 1.Molecular Transport Equations 2.Viscosity of Fluids 3.Fluid Flow.
Chapter 17 Thermochemistry.
Forms of Energy  Kinetic Energy – due to the movement of an object. As the blocks move they lose potential energy but it is converted to kinetic Kinetic.
Physical and Chemical Changes Pure Substances Mixtures States of Matter.
Section 10.1 Energy, Temperature, and Heat 1.To understand the general properties of energy 2.To understand the concepts of temperature and heat 3.To understand.
Thermal Model of MEMS Thruster Apurva Varia Propulsion Branch Code 597.
Chemical Bonds & Reactions Chemical Bond A force of attraction that holds two atoms together Has a significant effect on chemical and physical.
Design Analysis of Furnace Of A Steam Generator P M V Subbarao Professor Mechanical Engineering Department Perfection of Primary Cause for All that Continues…..
Chapter 3 Matter – Properties and Changes. I. Substances A substance is matter that has a uniform and unchanging composition - table salt is a substance,
One Dimensional Non-Homogeneous Conduction Equation P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A truly non-homogeneous.
Jeopardy Changes Temperature or Thermal E EnergyChemical Chemistry Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy.
Chemistry The study of the properties of matter and how matter changes. Element – a substance that cannot be broken down into any other substances by.
Energy and the Environment Fall 2013 Instructor: Xiaodong Chu : Office Tel.:
CHAPTER 2  Heat  Temperature and Conversions  Specific Heat.
Chapter 1: Fourier Equation and Thermal Conductivity
Kakutkina N.A., Korzhavin A.A., Rychkov A.D. Ignition of the waves of filtration gas combustion with open flame Institute of chemical kinetics and combustion.
Physical and Chemical Properties. Physical Properties  Physical property: a characteristic of a substance that describes it such as the color, luster,
Matter and Composition What is matter?  MATTER is anything which has mass and occupies space.  Matter is all things that we can see, feel, and smell.
Matter: Properties & Changes Glencoe: Sections 3.1 and 3.2.
L11: Combustion Learning Objectives:
HW# 2 /Tutorial # 2 WRF Chapter 16; WWWR Chapter 17 ID Chapter 3 Tutorial #2 WRF#16.2;WWWR#17.13, WRF#16.1; WRF#16.12; WRF#17.39; WRF# To be discussed.
INTRODUCTION TO CONVECTION
Steam Boilers and There Application By: Matt Hunt Date: November 2, 2005 Objective: to inform on the basic functions of a steam boiler and some of there.
Solid Rocket Motors A solid rocket motor is a system that uses solid propellants to produce thrust Advantages High thrust Simple Storability High density.
10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt.
5.5 A VOCABULARY. MATTER  Anything that has mass and takes up space  3 states of matter: solid, liquid, gas.
Chapter 1, section 2 Classification / Properties / Changes *Write all bold definitions from the textbook. Fill in the graphic organizer with types of matter.
Matter and Change Chapter Two. How do we describe matter? Extensive Properties depends on the amount of matter in a sample Intensive Properties depends.
Kinetic analysis of Temperature Programmed Reduction R. Jude vimal Michael National Centre for Catalysis Research 31 January 2009.
j a g g c h d j a b.
1 SOLID PROPELLANT ROCKETS Solid fuel rockets rely on controlled explosion of a mixture of substances Nearly a homogeneous material that is burned Similar.
THERMOCHEMISTRY. Law of conservation of energy Energy can be neither created or destroyed but can be converted from one form to another. Energy in = Energy.
Problem Research Hypothesis (proposed solution) Design Experiment Variable and control Record Observations Analyze data Conclusion.
1Korea University of Technology and Education 2 Generation Common Rail VGT Variable Swirl 32Bit Computer Elec. Controlled EGR Flap C P F Electronically.
A.N.Zagoruiko. Anaerobic catalytic oxidation of hydrocarbons in moving heat waves. Case simulation: propane oxidative dehydrogenation in a packed adiabatic.
SOL Review 7 Matter and Thermochemistry. Matter Anything that has mass and takes up space.
Hosted by Miss Dell It’s all about the STATE! Gas Laws- they MUST obey What’s the Matter? Properties- Both Physical and Chemical.
Is the process by which the substance changes from solid to liquid.
STRUCTURED CARTRIDGES WITH REINFORCED FIBER-GLASS CATALYST FOR FUEL COMBUSTION IN THE FLUIDIZED BEDS OF THE INERT HEAT-TRANSFER PARTICLES Sergey Lopatin1,
OUTLINE Combustion Chamber Deposits
Chapter 3 Matter NOTES (LT3)
REACTION RATES.
Presentation transcript:

CATALYST HEAT KNIFE FOR GAS GENERATE V.M. Khanaev, Е.S. Borisova and N.N.Kundo Boreskov Institute of catalysis Novosibirsk, Russia

Problems Solid – fuel composition A new approach to controlling the combustion of solid propellants on the basis of structured catalysts (porous materials and honeycomb blocks) was proposed by Kundo N.N. H2H2 CO O2O2 N2N2 Energy (Heat, electricity, chemical energy)

The use of Catalyst allows : To create a low-temperature compositions with a combustion temperature of ° C without using of coolant with a high burning rate To obtain a gas containing oxidizers or combustible components (H2, CO) or a neutral gas (N2, CO2) To control operatively the combustion rate and combustion chamber pressure

The use of catalysts in combustion of solid fuels Peculiarities of catalytic solid fuels combustion Small residence Time of catalyst particles in the flame zone sec The temperature of 300 o C o C Action increase the combustion rate increase the combustion rate providing a given burning rate dependence on pressure providing a given burning rate dependence on pressure Catalysts iron oxide, copper chromite, lead oxides iron oxide, copper chromite, lead oxides Plasticizers Plasticizers (ferrocene derivatives) Reaction zone low- temperature zone of the flamelow- temperature zone of the flame on the surface of the burning sampleon the surface of the burning sample Form the form of dispersed powdersthe form of dispersed powders

1 – body, 2 – water jacket, 3 - catalyst block, 4 – powdered gunpowder, 5 – propellant, 6 – shaft, 7 - safety valve, 8 – pressure sensor. The model gas generator scheme with the operating burning rate control

Structured catalysts

Combustion solid high energy compositions with catalytic knife Pressure in the combustor verses the displacement of the propellant charge with respect to a fixed block catalyst curves 1 - the displacement of the propellant charge 2 - the pressure in the combustor. the regime with combustion termination the regime with variation of the burning rate displacement pressure displacemen t

Computing

Mathematical model 1. Propellant 2. Structured catalyst Conservation of energy 3.Contact area Conservation of mass

Kinetics aminoguanidine nitrate decomposing Catalyst combustion

Effect of catalyst activity Pre-exponential factor of the reaction rate constant 1 –1.35*10 8 1/s, 2 – 5*10 8 1/s, *10 9 1/s, 4 – 5*10 9 1/s, * /s. Block thermal conductivity – 10 W/(m К). Entrance gas flow temperature

Effect of homogeneous combustion T 0 – gas flow temperature at the block entrance. Catalyst thermal conductivity λ = 5 W/m K

Effect of catalyst thermal conductivity Catalyst thermal conductivity: 1 – 2 W |m K, W/m К, W/m К, W/m К, W/m К. Entrance gas flow temperature

Dependence of maximal fuel burning rate on the catalyst thermal conductivity λ, W / (m K) Block sizes (for square cannel): 1 – cannel diameter = 1.2 mm, wall thickness = mm 2 – cannel diameter = 5 mm, wall thickness = 2 mm

Combustion process dynamic distance Temperature

Effect of catalyst initial heating Initial catalytic block temperature: 1 – C, 2 – C, 3 – C (stationary combustion regime couldn’t be obtained). h is the distance between catalyst and burning fuel. The initial distance was 1 mm for all cases. Catalyst thermal conductivity λ = 10 W/m K, t = 1, U = 0.9 mm/s

Effect of the initial distance between catalytic block and the surface of burning fuel h is the distance between catalyst and fuel. Initial distance was 0.5 mm (curve 1), 1 mm (curve 2) and 2 mm (curve 3, steady state regime couldn’t be obtained). The initial catalyst temperature was C for all cases.

Catalyst and fuel (the part close to contact zone) temperature profiles in various time moments 0 – t = 0 s,1 – t = s, 2 – t = s,3 – t = 0.01 s, 4 – t = 0.05 s,5 – t = 0.1 s, 6 – t = 0.4 s,7 – t = 1 s, 8 – t = 36 s (steady state regime) 0 – t = 0,1 – t = 1.5 s, 2 – t = 2 s,3 – t = 4 s 4 - t = 7 s,5 – t = 10 s, 6 – t = 36 s (steady state regime).

Gas generation process dynamics (decreasing of the fuel burning rate)

Gas generation process dynamics (increasing of the fuel burning rate)

Conclusions Catalytic knife ensures controlled combustion and forms the basis for the development of low- temperature gas generators. Mathematical modeling of combustion of a typical condensed substance heated to high temperatures by a catalyst block is performed. The proposed model can be used to describe correctly steady-state and dynamic regimes. An increase in the catalytic activity, as well as an increase in the thermal conductivity of the catalyst, is found to increase the range of real- time control of the burning rate of the condensed substance.

Kundo N.N.

Спасибо за внимание!

Конверсия на различных блоках (с учетом теплопотерь излучением) Диаметр канала – 1.2 мм, толщина стенки – мм; (кривые 1, 3) Диаметр канала – 5 мм, толщина стенки – 2 мм (кривые 2, 4).

Возможности применения контактного каталитического горения твердых топлив 1.Создание низкотемпературных газогенераторов с оперативным (командным) управлением газопроизводительностью и давлением. Применение для наддува емкостей, трапов, спасательных средств. 2.Применение газогенератора с регулируемым давлением и высокой производительностью (1,0-1,5 нм 3 газа на 1 кг топлива) для установок аварийного всплытия, вытеснения воды. 3.Использование газогенератора с регулируемым газорасходом и давлением для регулируемой подачи топлива и окислителя в системе ЖРД. 4.Применение длительно хранимых стабильных ТРТ контактного каталитического горения для двигателей ориентации, стыковки, перемещения в космосе с возможностью многократного включения и выключения двигателя. 5.Использование каталитического газогенератора в пусковых устройствах для запуска газотурбинных двигателей, для раскрутки коленчатого вала ДВС, при аварийной остановке основного двигателя. 6.Применение составов, генерирующих горючий восстановительный газ для комбинированных РД. 7.Применение газогенераторов, обеспечивающих получение окислительного газа для комбинированного РД. 8.Получение горячего топливного газа для обеспечения работы двигателя (например, газотурбинного) с применением дожигания воздухом. 9.Получение водородного топливного газа для обеспечения работы прямоточного реактивного двигателя. 10.Создание объектов на основе комбинации порометаллического носителя, обладающего каталитическими свойствами, с твердым топливом для использования их в качестве ложных целей, которые интенсивно излучают в инфракрасной области.