Amand Faessler, Tuebingen Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Amand Faessler, München, 24. November Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix.
Amand Faessler, GERDA, 11. November Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines.
Amand Faessler, Tuebingen1 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac.
Amand Faessler, 22. Oct Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the.
Lecture 3 – neutrino oscillations and hadrons
Description of Double Beta Decay, Nuclear Structure and Physics beyond the Standard Model - Status and Prospects. Amand Faessler University of Tuebingen.
Neutrino oscillations/mixing
Neutrinos 2. Neutrino scattering
Neutrinoless double beta decay and Lepton Flavor Violation Or, in other words, how the study of LFV can help us to decide what mechanism is responsible.
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
K. Zuber, University of Sussex Neutrinoless double beta decay SUSSP 61, St. Andrews, 9-23 Aug
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
P461 - particles VII1 Glashow-Weinberg-Salam Model EM and weak forces mix…or just EW force. Before mixing Bosons are massless: Group Boson Coupling Quantum.
CP-phase dependence of neutrino oscillation probability in matter 梅 (ume) 田 (da) 義 (yoshi) 章 (aki) with Lin Guey-Lin ( 林 貴林 ) National Chiao-Tung University.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
0νββ nuclear matrix elements within QRPA and its variants W. A. Kamiński 1, A. Bobyk 1 A. Faessler 2 F. Šimkovic 2,3, P. Bene š 4 1 Dept. of Theor. Phys.,
Atmospheric Neutrino Anomaly
A LOOK INTO THE PHYSICS OF NEUTRINOS J A Grifols, UAB Viña del Mar, Dec 06.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
1 The elusive neutrino Piet Mulders Vrije Universiteit Amsterdam Fysica 2002 Groningen.
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Neutrino Mass By Ben Heimbigner.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
H. Ray Los Alamos National Laboratory MiniBooNE
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
0 American Physical Society MultiDivisional Neutrino Study DOE-OS Briefing January 7, 2005 Washington DC Stuart Freedman Boris Kayser.
1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Nuclear matrix elements 1 / T 1/2 = PS * NME 2 * (m / m e ) 2 measured quantityquantity of interest The big unknown Started worldwide effort for a coherent.
0 Physics of Neutrinos From Boris Kayser, Fermilab.
Double beta decay and neutrino physics Osaka University M. Nomachi.
Can one measure the Neutrino Mass in the Double Beta Decay ?
Monday, Feb. 24, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #11 Monday, Feb. 24, 2003 Dr. Jae Yu 1.Brief Review of sin 2  W measurement 2.Neutrino.
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
Wednesday, Feb. 14, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #6 Wednesday, Feb. 14, 2007 Dr. Jae Yu 1.Neutrino Oscillation Formalism 2.Neutrino.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay.
Neutrino Nobel Prize overview
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Analysis of Alpha Background in SNO Data Using Wavelet Analysis
New era of neutrino physics 1.Atmospheric neutrino oscillations (in particular zenith angle dependence of the muon neutrino flux) 2. Solar neutrino deficit.
Ohio State DUSEL Theory Workshop Stuart Raby Underground Detectors Investigating Grand Unification Brookhaven National Lab October 16, 2008.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Open questions in  physics  : mechanism & EFT III. Neutrinos.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
Lecture 2: Is the total lepton number conserved? Are neutrinos Dirac
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
March 3, 2009Tom Gaisser1 Neutrino oscillations Review of particle physics, neutrino interactions and neutrino oscillations.
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
Standard Model - Standard Model prediction (postulated that neutrinos are massless, consistent with observation that individual lepton flavors seemed to.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Amand Faessler, Madrid, 8. June Double Beta Decay, a Test for New Physics Amand Faessler Tuebingen „The Nuclear Matrix Elements for the  are.
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
Neutrino Masses and Flavor Mixing H. Fritzsch.
Flavor Mixing of quarks.
Neutrino Masses, Double Beta Decay and Nuclear Structure
The Physics of Neutrinos
Solar Neutrino Problem
NOW 2006 Recent developments in Double Beta Decay Fedor Šimkovic
Amand Faessler University of Tuebingen
Neutrino Oscillations
Search for Lepton-number Violating Processes
Presentation transcript:

Amand Faessler, Tuebingen Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos 3. Neutrino Masses and Supersymmetry

Amand Faessler, Tuebingen (1) Solar Neutrino Problem Reaction Network: Oscillations: Fewer ν e on Earth detected than produced in the Sun. Oscillations depend on:

Amand Faessler, Tuebingen Sudburry Neutrino Observatory Creighton Mine Ontario / Canada (Zink Mine)

Amand Faessler, Tuebingen THE SNO CHERENKOV DETECTOR WITH HEAVY WATER 9456 Photomultipliers Ø 20 cm 55 % of 4 π Cherenkow radiation of e - Trigger ≥ 23 PMT E ν (Threshold) = 6.75 MeV Ø 17 m; view from below

Amand Faessler, Tuebingen Cherenkov - Detectors: (ES) Elastic Neutrino Scattering: e- forward scattering S-KAMIOKANDE + SNO e - (fast) νeνe W+W+ νeνe e-e- e-e- νxνx νxνx Z0Z0 + 6:1:1:1

Amand Faessler, Tuebingen Charged Current (CC): e- backward SNO e-e- νeνe W+W+ P P Deuteron (p + n)

Amand Faessler, Tuebingen (NC) Neutral Current: n-capture in salt NaCl (n, γ) νxνx νxνx Z0Z0 Pn Deuteron SNO

Amand Faessler, Tuebingen Assuming only Electron Neutrinos: (ES) 2.35*10 6 [ Φ ] (CC) 1.76*10 6 [ Φ ] (NC) 5.09*10 6 [ Φ ] Including Muon and Tauon ν : Φ ( ν e)=1.76*10 6 (CC) Φ ( νμ + ν τ)=3.41*10 6 (CC+ES) Φ ( ν e+ νμ + ν τ)=5.09*10 6 (NC) Φ ( ν -Bahcall)=5.14*10 6

Amand Faessler, Tuebingen ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande

Amand Faessler, Tuebingen (Bild)

Amand Faessler, Tuebingen (2) Neutrinoless Double Beta Decay The Double Beta Decay: β-β β-β- e-e- e-e- E>2m e

Amand Faessler, Tuebingen 2 νββ -Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen PP nn

Amand Faessler, Tuebingen O νββ -Decay (forbidden) only for Majorana Neutrinos ν = ν c P P nn Left ν Phase Space 10 6 x 2 νββ

Amand Faessler, Tuebingen GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass:

Amand Faessler, Tuebingen P P ν ν nn e-e- e-e- L/R l/r

Amand Faessler, Tuebingen l/r P ν P n n light ν heavy N Neutrinos

Amand Faessler, Tuebingen Theoretical Description: Simkovic, Rodin, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel et al k k k e1e1 e2e2 P P ν EkEk EiEi n n 0 νββ

Amand Faessler, Tuebingen

Supersymmetry Bosons ↔ Fermions Neutralinos PP e-e- e-e- nn u u u u dd Proton Neutron

Amand Faessler, Tuebingen Majorana;

Amand Faessler, Tuebingen The best choice: Quasi-Particle-  Quasi-Boson-Approx.:  Particle Number non-conserv. (important near closed shells)  Unharmonicities  Proton-Neutron Pairing Pairing

Amand Faessler, Tuebingen

Nucleus 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 128 Te 130 Te 134 Xe 136 Xe 150 Nd T1/2 (exp) [years] > > > > > > > > > > > Ref.:YouKlap- dor Elli- ott Arn.EjiriDane- vich Ales. Ber.Stau dt Klime nk. [eV]<22.<0.47<8.7<40.<2.8<3.8<17.<3.2<27.<3.8<7.2 η ~m(p)/M(  <200.<0.79<15.<79.<6.0<7.0<27.<4.9<38.<3.5<13. λ‘(111)[10 -4 ] <8.9<1.1<5.0<9.4<2.8<3.4<5.8<2.4<6.8<2.1<3.8 Only for Majorana ν possible.

Amand Faessler, Tuebingen g PP fixed to 2 νββ Each point: (3 basis sets) x (3 forces) = 9 values

Amand Faessler, Tuebingen

Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments  from R-QRPA; m  ) =  )

Amand Faessler, Tuebingen Neutrino-Masses for the Double 0 νβ- Decay and Neutrino Oscillations Solar Neutrinos Atmospheric ν Reactor ν (Chooz; KamLand) with CP-Invariance:

Amand Faessler, Tuebingen Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.)

Amand Faessler, Tuebingen Reactor Neutrinos (Chooz): CP

Amand Faessler, Tuebingen OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003

Amand Faessler, Tuebingen Normal: Inverted:

Amand Faessler, Tuebingen (Bild)

Amand Faessler, Tuebingen

Summary: Neutrinos Oscillations, Neutrino Masses and the Double beta Decay 1. Solution of the Solar Neutrino Problem by theSudburry-Neutrino-Observatory (SNO): Elastic Scattering (S-KAMIOKANDE): Heavy Water (SNO: Charged Currents): νxνx νxνx Z0Z0 e-e- e-e- e-e- e-e- νcνc νcνc W+W+ νcνc d d e-e- W+W+ PP P n n n P P νxνx νxνx Z0Z0

Amand Faessler, Tuebingen 2. Neutrinoless Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violating Supersymmetry → Majorana-Neutrinos = Antineutrinos Direct measurement in the Tritium Beta Decay in Mainz and Troisk nn nn P P PP d d d d u u u u u u

Amand Faessler, Tuebingen 3. Neutrino Masses and Supersymmetry R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV] 0-Neutrino Double Beta decay = [eV] ββ Experiment: < 0.47 [eV] Klapdor et al.: = 0.1 – 0.9 [eV] Tritium (Otten, Weinheimer, Lobashow) < 2.2 [eV] THE END

Amand Faessler, Tuebingen ν -Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos:

Amand Faessler, Tuebingen Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to m v X X Majorana Neutrino

Amand Faessler, Tuebingen Figure 0.2: lepton-slepton 1-loop contribution to m v (7x7) Mass-Matrix: X X Block Diagonalis.

Amand Faessler, Tuebingen 7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible

Amand Faessler, Tuebingen Super-K:

Amand Faessler, Tuebingen Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking:

Amand Faessler, Tuebingen How to calculate λ ‘ i33 (and λ i33 ) from λ ‘ 333 ? U(1) charge conserved! 1,2,3 = families