Neutron activation of materials relevant for GERDA Institut für Kern- und Teilchenphysik March 12th 2009 GERDA-meeting - Padova Alexander Domula.

Slides:



Advertisements
Similar presentations
Suzanne D'Anna1 Composition of Matter. Suzanne D'Anna2 Composition of Matter l all matter is composed of ELEMENTS l elements cannot be decomposed or broken.
Advertisements

Interaction of radiation with matter - 5
Contributions to Nuclear Data by Radiochemistry Division, BARC
1 Nuclear Chemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 14 Fission and Fusion. Elementary Particles. Nuclear Fission Nuclear Fusion Fundamental Interaction (Forces) Elementary Particles.
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
University of Cambridge Stéphane Forsik 5 th June 2006 Neural network: A set of four case studies.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Alpha, Beta, and Gamma Decay
Several nomenclatures are important: ● Nuclide: is any particular atomic nucleus with a specific atomic number Z and mass number A, it is equivalently.
The Nature of Molecules
Precise neutron inelastic cross section measurements A.Negret 1 1 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest, ROMANIA.
Neutron Interactions neutrons essentially interact only with the atomic nucleus cross-sections can vary dramatically and erratically based on complex interactions.
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
Nuclear Chemistry.
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
Nuclear Chemistry.
Scandium Sc. Titanium Ti Vanadium V Chromium Cr.
E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
1 JASMIN Activation Experiments (T-972/993/994) Yoshimi Kasugai on behalf of JASMIN Activation team JASMIN Activation team Y. Kasugai, K. Oishi, H. Matsumura,
Atom and Nucleus. Radioactivity. Nuclear Energy.
Number your paper Write down the correct letter or letter combination that goes with the element. Make sure your upper and lower case letters are.
CHAPTER 2: The Chemistry of Life BIO 121. Chemistry is relevant… (even if we don’t like it)
The Status of Nuclear Data above 20 MeV Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency IAEA’s Technical Meeting on Nuclear Data Libraries.
Nuclear Data Activities at PTB
ELEMENTS atomic number = Z = number of protons = p mass number = number of nucleons = p + n atomic mass = experimental measurement of the mass of the.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Association FZK-Euratom Status of Neutronics Tools & Data for IFMIF-EVEDA U. Fischer, S. Simakov.
If the Coordinates system is. R r b (impact parameter.
Cobalt Cobalt - metal - may be stable (nonradioactive, as found in nature), or unstable (radioactive, man-made). Most common radioactive isotope is cobalt-60.
Neutron inelastic scattering measurements at the GELINA facility of EC-JRC-IRMM A. Negret 1, C. Borcea 1, A. Plompen 2 1 NIPNE-HH, Romania 2 EC-JRC-IRMM,
Known nuclides PROPERTIES OF FUNDAMENTAL PARTICLES Particle Symbol Charge Mass (x Coulombs) (x kg) Proton P Neutron N.
Lecture 26 Atomic Structure and Radioactivity Chapter 29.1  29.4 Outline Properties of the Atomic Nucleus Binding Energy Radioactivity and Radioactive.
Nuclear Chemistry The Atom The atom consists of two parts: 1. The nucleus which contains: 2. Orbiting electrons. protons neutrons Multiple nuclei is.
Nucleosynthesis and formation of the elements. Cosmic abundance of the elements Mass number.
1-1 Lecture 1: RDCH 702 Introduction Class organization §Outcomes §Grading Chart of the nuclides §Description and use of chart §Data Radiochemistry introduction.
Nuclear Chemistry. The Atom The atom consists of two parts: 1. The nucleus which contains: 2. Orbiting electrons. protons neutrons.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Neutron Capture Cross Sections from 1 MeV to 2 MeV by Activation Measurements Korea Institutes of Geoscience and Mineral Resource G.D.Kim, T.K.Yang, Y.S.Kim,
Fusion Neutronics Activity at JAERI from October 2000 to September 2001 Peseted by Takeo NISHTANI IEA International Work Shop on Fusion Neutronics The.
1-1 Lecture 1: RDCH 702 Introduction Class organization §Outcomes §Grading Chart of the nuclides §Description and use of chart §Data Radiochemistry introduction.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
HTS Tl-based coatings for FCC beam screens - Radiation Protection Aspects - Markus WIDORSKI, DGS-RP Information on ActiWiz: Courtesy of Chris Theis, DGS-RP.
1 G. Cambi, D.G. Cepraga, M. Frisoni Enea & Bologna University Team OSIRIS neutronic and activation simulation with Scalenea-ANITA in support of PACTITER/CORELE.
Wir schaffen Wissen – heute für morgen Paul Scherrer Institut Preparation of 60 Fe, 44 Ti, 53 Mn, 26 Al and 7/10 Be samples for astrophysical experiments.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
Neutron production and iodide transmutation studies using intensive beam of Dubna Phasotron Mitja Majerle Nuclear Physics Institute of CAS Řež, Czech republic.
Nuclear Decay.
Studies of (n,xn) reaction cross-sections and also cross-sections of relativistic deuteron reactions obtained by the activation method Vladimír Wagner.
Nuclear Pharmacy Lecture 2.
Investigation of the proton-induced reactions on natural molybdenum.
SPECIFICATION OF ENGINEERING MATERIALS
S2 SCIENCE CHEMICAL REACTIONS
Reactor As Neutrino Source
Induced-activity experiment:
Neutron activation analysis in Mongolia
THE TRANSITION METALS.
Nuclear Chemistry Chemistry involving changes in the nucleus References: Text Chapter 19 Review Book Topic 12.
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
THE TRANSITION METALS.
Periodic Table of the Elements
كيمياء العناصر الانتقالية
Chapter 21 Nuclear Chemistry
Nucleosynthesis and formation of the elements
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Edexcel Topic 1: Key concepts in chemistry
Nuclear Decay.
Elements
The need for cross section measurements for neutron-induced reactions
Presentation transcript:

Neutron activation of materials relevant for GERDA Institut für Kern- und Teilchenphysik March 12th 2009 GERDA-meeting - Padova Alexander Domula

2 ŒNeutron Introduction/Activation Experiments Neutron-Activations with 14MeV Neutrons ŽActivation of copper and stainless steel components

3 Neutron Activation Experiments Neutron sources: radioactive sources -radioactive -sources ( 210 Po, 241 Am,…) - 7 Li(,n) 10 B, 9 Be(,n) 12 C, 13 C(,n) 16 O,… Am- 9 Be source E n midd = 4,46 MeV nuclear fission -Maxwell- or Wattspectra; E (  max ) ≈ 1 MeV

4 Neutron Activation Experiments accelerators -charged particle reactions  7 Li(p,n) 10 B (Q=-1,646 MeV)  2 H(d,n) 3 He (Q=3,266 MeV)  3 H(d,n) 4 He (Q=17,586 MeV; E n ≈14,064 MeV) -Bremsstrahlung  (,n)-reactions cosmic ray reactions

5 Neutron Activation Experiments inelastic scattering  74 Ge(n,n‘) 74 Ge * Neutron capture  74 Ge(n,) 75m Ge

6 Neutron Activation Experiments fast Neutron activation  63 Cu(n,) 60 Co  76 Ge(n,p) 76 Ga  59 Co(n,p) 59 Fe  65 Cu(n,2n) 64 Cu

7 Neutron Activation Experiments competing reaction channels one product of different isotopes one product of different reaction channels

8 Neutron Activation Experiments spectroscopy of Neutron fields dosimetry measurement of Neutron-reaction cross-sections exploring nuclear level schemes material analysis

9 Activation Experiments at 14 MeV TUD Neutron Generator motivation: GERDA meeting at Nov 2008 „Cosmogenic Radionuclides in stainless steel and copper“ G.Heusser, M. Laubenstein 1. stainless steel 2. copper

10

11 Activation Experiments at 14 MeV TUD Neutron Generator chemical composition of stainless steel (X6CrNiMoTi ) Element CSiMnPSCrMoNiTi Max. fraction % 0,081,002,000,0450,015 18,52,513,50,7 + Fe + rest consists of Fe activation experiments at neutron facility at FZD Rossendorf -stainless steel components (1.4571):  Fe, Mo, Ni, Ti activated elementwise

12 Activation of stainless steel components (Fe) end irradiation Feb 12th 2009, 16:00 short living nuclides -Feb 12th 2009, 17:33:15, t L = 580 s E [keV]Nuclid 846,856-Mn 1811,3856-Mn 2114,0456-Mn 2524,1856-Mn 3371,2856-Mn

13 Activation of stainless steel components (Fe) long living nuclides -Feb 27th 2009, 11:42:13 t L = 256‘979 s E [keV]Nuclid 121,3857-Co 319,7951-Cr 510,99Annihilation 810,7658-Co 834,954-Mn

14 Activation of stainless steel components two ways to get 54 Mn  56 Fe(n,2np) 54 Mn  54 Fe(n,p) 54 Mn not mentioned  14 MeV Neutrons!

15 cross section vs. Neutron Flux   activation 2,6 times higer for 56 Fe(n,2np) 54 Mn reaction  54 Fe(n,p) 54 Mn also important

16 Activation of stainless steel components (Mo) E [keV]Nuclid 140,0299-Mo / 99m-Tc 180,599-Mo 235,4995m-Nb 765,7695-Nb 777,9396-Nb 934,5492-Nb 1199,8996Nb 1204,8891m-Nb 1477,3893m-Mo long living nuclides t L = 165‘840 s

17 Activation of stainless steel components (Ni) short living nuclides t L = 1‘750 s E [keV]Nuclid 121,2157-Co 136,8857-Co 127,7557-Ni 510,8Annihilation 810,5858-Co 847,1556-Co ? 1377,8457-Ni 1758,2757-Ni 1920,557-Ni

18 Activation of stainless steel components (Ti) E [keV]Nuclid 158,7247-Sc 174,7748-Sc 510,9446-Sc 888,9948-Sc 983,3348-Sc 1037,3546-Sc 1120,4947-Sc 1212,8248-Sc 1312,1248-Sc long living nuclides t L = 170‘465 s

19 Activation of Copper E [keV]Nuclid 366,1465-Ni 510,86Annihilation 1115,765-Ni 1346,1864-Cu 1482,1865-Ni end irradiation Feb 12th 2009, 16:00 short living nuclides -Feb 12th 2009, 17:07:24, t L = 1‘239 s

20 Activation of Copper long living nuclides -Mar 2nd 2009, 12:03:33 t L = 169‘995 s E [keV]Nuclid 121,0257-Co 135,0357-Co 510,76Annihilation 608,50214-Bi 809,7358-Co 1171,9660-Co 1331,0560-Co 1460,3040-K 1763,63214-Bi 2504,83  60-Co 2613,64208-Tl

21 cobalt in copper ?

22 Cross sections 59 Co(n,x) 59 Co(n,2n) 58 Co only when 59 Co(n,) 56 Mn is visible

23 Activation of Cobalt short living nuclides -t L = 265 s E [keV]Nuclid 510,92Annihilation 810,7258-Co 846,7656-Mn 1099,2859-Fe 1291,8559-Fe 1811,3156-Mn 2113,9756-Mn 2524,0956-Mn 3373,8456-Mn

24 Summary Neutron activation is a powerful tool to investigate radioisotope production First samples of Fe, Ni, Mo, Ti, Cu and Co have been activated with 14 MeV Neutrons 54 Fe(n,p) 54 Mn reaction can‘t be neglected for 54 Mn production on iron Observed 57 Co by copper activation due to nickel within Cu

25 Next steps activation of stainless steel sample provided by G. Heusser work towards cross section measurement activation of chrome ? Activation of Argon ? Activation of any other Material of interest for GERDA ?