Der Paul van der Werf Leiden Observatory Fingerprinting (ultra)luminous infrared galaxies `   September 27, 2010 + Institute for Astronomy.

Slides:



Advertisements
Similar presentations
Extended IR Emission from LIRGs V. Charmandaris, T. Diaz-Santos, (Univ. of Crete) L. Armus & A. Petric (SSC/Caltech)
Advertisements

Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
Buried AGNs in nearby ULIRGs Masa Imanishi (National Astronomical Observatory of Japan)
Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation Jingwen Wu & Neal J. Evans II (Univ. of Texas at Austin) ; Yu Gao.
Extragalactic Star Formation into the ALMA Era (Beyond CO)* Yu GAO 高 煜 Purple Mountain Observatory, Nanjing Chinese Academy of Sciences *Dedicated to the.
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
Der Paul van der Werf Leiden Observatory HerCULES Lorentz Centre February 28, 2012.
Der Paul van der Werf Leiden Observatory Star formation and molecular gas in (U)LIRGs Sant Cugat April 17, 2012.
(Cold) dust and gas in high-z AGNs: a prelude to Herschel and ALMA Roberto Maiolino Osservatorio Astronomico di Roma.
Der Paul van der Werf Leiden Observatory Radiative and mechanical feedback in the molecular gas in (U)LIRGs London September 16, 2011.
The Effects of X-rays on Star Formation and Black Hole Growth in Young Galaxies Ayçin Aykutalp (Kapteyn), John Wise (Georgia), Rowin Meijerink (Kapteyn/Leiden)
 High luminosity from the galactic central region L bol ~ erg/s  High X-ray luminosity  Supermassive black hole at the center of the galaxy.
Imaging Arp 220 in CO 6-5 and dust at 100 pc resolution with ALMA C. Wilson, (McMaster); N. Rangwala, J. Glenn, P. Maloney, J. R. Kamenetzky (Colorado);
Eddington limited starbursts in the central 10pc of AGN Richard Davies, Reinhard Genzel, Linda Tacconi, Francisco Mueller Sánchez, Susanne Friedrich Max.
The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
MIR Diagnostics and Molecular Gas in Local Luminous Infrared Galaxies Andreea Petric Collaborators: L. Armus, J. Howell, J. Surace (SSC/Caltech), A. Evans.
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
Determining the dynamics of the ultracompact HII region (UCHII) Monoceros R2 A. Fuente Observatorio Astronómico Nacional (OAN)
Alexandra Pope (UMass Amherst) JWST Workshop – STScI Baltimore June 8, 2011 Mid-Infrared Observation of High Redshift Galaxy Evolution.
Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Studies of Star.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Frayer (1) Redshifted Molecular Gas – Evolution of Galaxies David T. Frayer (NRAO) ALMA-Band ALMA Band-2 (68-90 GHz) is a crucial missing band for.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
Large-Scale Winds in Starbursts and AGN David S. Rupke University of Maryland Collaborators: Sylvain Veilleux D. B. Sanders  v = km s -1 Rupke,
SPIRE-FTS spectrum of Arp 220, Mrk 231 and NGC Bright CO (J = 4-3 to J = 13-12), water, and atomic fine-structure line transitions are labeled. The.
Vandana Desai Spitzer Science Center with Lee Armus, Colin Borys, Mark Brodwin, Michael Brown, Shane Bussmann, Arjun Dey, Buell Jannuzzi, Emeric Le Floc’h,
R. Meijerink, P. van der Werf, F. Israel and the HEXGAL team HERSCHEL OBSERVATIONS OF Edo Loenen, Leiden Observatory EXTRA GALACTIC STAR FORMATIONMESSIER.
The Global Star Formation Laws in Galaxies: Recent Updates Yu Gao Purple Mountain Observatory Chinese Academy of Sciences May 15, th sino-french.
D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Cosmic Rays: Gas Phase Astrophysics and Astrochemistry Marco Spaans (Groningen) Rowin Meijerink (Leiden), Edo Loenen (Leiden), Paul van der Werf (Leiden),
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Molecular Line Studies and Chemistry in Interacting and Starburst Galaxies Susanne Aalto Department of Radio and Space Science With Onsala Space Observatory.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
CO Spectral Line Energy Distributions in Orion Sources: Templates for Extragalactic Observations Nick Indriolo & Ted Bergin University of Michigan June.
THE HERSCHEL VIEW OF AGN EVOLUTION AND CONNECTIONS WITH SF IN HOST GALAXIES C. Gruppioni INAF - OABo C. Gruppioni INAF - OABo AGN9: Ferrara Maggio.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
Der Paul van der Werf Leiden Observatory Dense gas in ULIRGs Crete September 15, 2008.
SED of Galaxies in the IR–MM domain Frédéric Boone LERMA, Observatoire de Paris.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Herschel 3.5m IRAM Plateau de Bure 6  12 x 15m
Topic: “Ionized atomic lines in high-z galaxies” K. Kohno (IoA/RESCEU) Journal Club June 15 th, 2012 “Ionized nitrogen at high redshift”, Decarli et al.
Herschel View of the Warm Molecular Gas in the LMC Star-forming region N159W Min-Young Lee CEA-Saclay, France Collaborators S. Madden, V. Lebouteiller,
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Understanding Local Luminous Infrared Galaxies in the Herschel Era
Excitation of H2 in NGC 253 Marissa Rosenberg
Interferometric 3D observations of LIRGs
HERSCHEL and Galaxies/AGN “dust and gas”
The Interstellar Medium
Millimeter Megamasers and AGN Feedback
Presentation transcript:

der Paul van der Werf Leiden Observatory Fingerprinting (ultra)luminous infrared galaxies `   September 27, Institute for Astronomy University of Edinburgh

Fingerprinting Ultraluminous Infrared Galaxies2 “Simple people who think that they can learn astronomy by only looking at the stars, without knowledge of mathematics, will in a future life become birds." (Plato, T  ) (Plato, T  ) “Imaging is for the man who cannot do spectroscopy." (Origin unknown) (Origin unknown)

Credits Kate Isaak (ESTEC) Padelis Papadopoulos (Bonn University) Rowin Meijerink (Leiden Observatory) Edo Loenen (Leiden Observatory) Eduardo González-Alfonso (Henares) Marco Spaans (Kapteyn Astronomical Institute) Axel Weiß (MPI für Radioastronomie) Francesco Costagliola (Onsala) Susanne Aalto (Onsala) 3 Fingerprinting Ultraluminous Infrared Galaxies

Outline   Molecular gas in (U)LIRGs (L IR > 10 11(12) L  )   The CO rotational ladder as a PDR/XDR diagnostic   What do H 2 O and other lines tell us?   Outlook 4 Fingerprinting Ultraluminous Infrared Galaxies

Irtrons?? 5

ULIRGs ULIRGs (L IR >10 12 L  ) (Evans et al. ) 6 Fingerprinting Ultraluminous Infrared Galaxies

Molecular gas in ULIRGs   CO 1 — 0 reveals large gas masses, concentrated in compact structures (disks or rings), typically < 1 kpc in radius (Downes, Solomon, Radford, Scoville,…)   X-factor converting CO luminosity into H 2 mass is subject of endless debate, since   In ULIRGs a factor of 5 below “normal” is often adopted (Downes, Solomon, et al). Uncertain!   Higher CO lines trace gas that is both warm and dense. Resulting H 2 masses (e.g., for high-z galaxies) are then even more uncertain. 7 Fingerprinting Ultraluminous Infrared Galaxies

(U)LIRGs from low to high z   Downsizing: Looking back towards higher redshifts, star formation occurs in increasingly more luminous (dusty) galaxies  Can luminous high-z galaxies be understood using the same tools and models as at low z? ULIRGs total <LIRGs LIRGs 8 Fingerprinting Ultraluminous Infrared Galaxies (Le Floc’h et al. 2005)

ISM in luminous high-z galaxies 9  Even in ALMA era, limited spatial resolution on high-z galaxies.  For unresolved galaxies, multi-line spectroscopy will be a key diagnostic (Weiß et al. 2007) Fingerprinting Ultraluminous Infrared Galaxies (Danielson et al. 2010)

Warning: may contain  quiescent molecular (and atomic) gas  star-forming molecular gas (PDRs)  AGN (X-ray) excited gas (XDRs)  cosmic ray heated gas  shocks  mechanically (dissipation of turbulence) heated gas  warm very obcured gas (hot cores) See talk by Meijerink (PDR/XDR) Fingerprinting Ultraluminous Infrared Galaxies

Outline   Molecular gas in (U)LIRGs (L IR > 10 11(12) L  )   The CO rotational ladder as a PDR/XDR diagnostic   What do H 2 O and other lines tell us?   Outlook 11 Fingerprinting Ultraluminous Infrared Galaxies

PDRs vs. XDRs Four differences:  X-rays penetrate much larger column densities than UV photons  Gas heating efficiency in XDRs is ≈10 — 50%, compared to <1% in PDRs  Dust heating much more efficient in PDRs than in XDRs  High ionization levels in XDRs drive ion-molecule chemistry over large column density 12 Fingerprinting Ultraluminous Infrared Galaxies

PDRs vs. XDRs: CO lines  XDRs produce larger column densities of warmer gas  Identical incident energy densities give very different CO spectra  Very high J CO lines are excellent XDR tracers  Need good coverage of CO ladder (Spaans & Meijerink 2008) 13 Fingerprinting Ultraluminous Infrared Galaxies

Introducing HerCULES 14 Herschel Comprehensive (U)LIRG EmissionSurvey Open Time Key Program on the Herschel satellite Fingerprinting Ultraluminous Infrared Galaxies

HerCULES in a nutshell   HerCULES will uniformly and statistically measure the neutral gas cooling lines in a flux-limited sample of 29 (U)LIRGs.   Sample:   all IRAS RBGS ULIRGs with S 60 > Jy (6 sources)   all IRAS RBGS LIRGs with S 60 > 16.8 Jy (23 sources)   Observations:   SPIRE/FTS full high-resolution scans: 200 to 670  m at R ≈ 600, covering CO 4 — 3 to 13 — 12 and [CI] + any other bright lines   PACS line scans of [CII] and both [OI] lines   All targets observed to same (expected) S/N   Extended sources observed at several positions 15 Fingerprinting Ultraluminous Infrared Galaxies

Who is HerCULES? Paul van der Werf (Leiden; PI) Susanne Aalto (Onsala) Lee Armus (Spitzer SC) Vassilis Charmandaris (Crete) Kalliopi Dasyra (CEA) Aaron Evans (Charlottesville) Jackie Fischer (NRL) Yu Gao (Purple Mountain) Eduardo González-Alfonso (Henares) Thomas Greve (Copenhagen) Rolf G ü sten (MPIfR) Andy Harris (U Maryland) Chris Henkel (MPIfR) Kate Isaak (ESA) Frank Israel (Leiden) Carsten Kramer (IRAM) Edo Loenen (Leiden) Steve Lord (NASA Herschel SC) Jesus Martín-Pintado (Madrid) Joe Mazzarella (IPAC) Rowin Meijerink (Leiden) David Naylor (Lethbridge) Padelis Papadopoulos (Bonn) Adam Rykala (Cardiff) Dave Sanders (U Hawaii) Giorgio Savini (Cardiff/UCL) Howard Smith (CfA) Marco Spaans (Groningen) Luigi Spinoglio (Rome) Gordon Stacey (Cornell) Sylvain Veilleux (U Maryland) Cat Vlahakis (Leiden/Santiago) Fabian Walter (MPIA) Axel Wei ß (MPIfR) Martina Wiedner (Paris) Manolis Xilouris (Athens) 16 Fingerprinting Ultraluminous Infrared Galaxies

HerCULES sample Target log(L IR /L  ) Mrk IRAS F17207— IRAS 13120— Arp Mrk IRAS F05189— Arp NGC IRAS F18293— Arp IC NGC NGC NGC Target log(L IR /L  ) IC 4687/ NGC NGC MCG+12—02— Mrk IRAS 13242— NGC Zw NGC NGC IRAS F11506— NGC NGC NGC NGC Fingerprinting Ultraluminous Infrared Galaxies

18 Mrk231 HST/ACS (Evans et al., 2008)  At z=0.042, one of the closest QSOs (D L =192 Mpc)  With L IR = 4  L , the most luminous ULIRG in the IRAS Revised bright Galaxy Sample  “Warm” infrared colours  Star-forming disk (~500 pc radius) + absorbed X-ray nucleus  Face-on molecular disk, M H 2 ~ 5  10 9 M  Fingerprinting Ultraluminous Infrared Galaxies

Mrk231 SPIRE FTS 19 (Van der Werf et al., 2010) Fingerprinting Ultraluminous Infrared Galaxies

CO excitation 2 PDRs + XDR 6.4:1:4.0 n=10 4.2, F X =28 * n=10 3.5, G 0 = n=10 5.0, G 0 = * 28 erg cm -2 s -1  G 0 = Fingerprinting Ultraluminous Infrared Galaxies

CO excitation 3 PDRs 6.4:1:0.03 n=10 6.5, G 0 = n=10 3.5, G 0 = n=10 5.0, G 0 = Fingerprinting Ultraluminous Infrared Galaxies

High-J lines: PDR or XDR?   High-J CO lines can also be produced by PDR with n= cm —3 and G 0 =10 5, containing half the molecular gas mass.   Does this work?   G 0 =10 5 only out to 0.3 pc from O5 star; then we must have half of the molecular gas and dust in 0.7% of volume.   With G 0 =10 5, 50% of the dust mass would be at 170K, which is ruled out by the Spectral Energy Distribution   [OH + ] and [H 2 O + ] > 10 —9 in dense gas requires efficient and penetrative source of ionization; PDR abundances factor 100— 1000 lower 22 Fingerprinting Ultraluminous Infrared Galaxies

PDR/XDR model  PDR 1:  n=10 3.5, G 0 =10 2, R~500pc  Large scale molecular gas   Low-J CO, low H 2 O lines  PDR 2:  n=10 5, G 0 =  Small, dense SF clumps   mid-J CO lines  XDR:  n=10 4.2, F X =28, R~150pc  Circumnuclear XDR disk   High-J CO, OH +, H 2 O +, high H 2 O lines high H 2 O lines 160 pc 560 pc 23 Fingerprinting Ultraluminous Infrared Galaxies

24 The nearest starburst galaxy: M82  At D = 3.9 Mpc, one of the closest starburst galaxies  With L IR = 3  L , a very moderate starburst  “Cool” infrared colours

CO ladder of M82: SPIRE-FTS  FTS spectrum dominated by CO lines  No H 2 O lines detected  CO fluxes drop towards high J 25 Fingerprinting Ultraluminous Infrared Galaxies (Panuzzo et al., 2010)

HIFI observations of M82  HIFI spectra reveal multiple components with different excitation 26 Fingerprinting Ultraluminous Infrared Galaxies (Loenen et al., 2010) (CO 6  5, JCMT)

CO ladder of M82  CO ladder drops at high J  Combination of PDRs accounts for both the 12 CO and the 13 CO lines  Highest excitation component can be identified in line profiles 27 Fingerprinting Ultraluminous Infrared Galaxies (Loenen et al., 2010)

Outline   Molecular gas in (U)LIRGs (L IR > 10 11(12) L  )   The CO rotational ladder as a PDR/XDR diagnostic   What do H 2 O and other lines tell us?   Outlook 28 Fingerprinting Ultraluminous Infrared Galaxies

H 2 O lines in M82  Complex and diverse line profiles  Absorption depth  large covering factor 29 Fingerprinting Ultraluminous Infrared Galaxies (Weiß et al., 2010)

Mrk231 SPIRE FTS: H 2 O emission lines 30 Fingerprinting Ultraluminous Infrared Galaxies

H 2 O lines in Mrk231  Low lines: extended component  High lines: compact component  Radiative pumping dominates (González-Alfonso et al., 2010) 31 Fingerprinting Ultraluminous Infrared Galaxies

Tracers of UV-shielded warm gas  Hot core molecules (cf., Orion) trace warm, dense gas that is shielded from UV-radiation  Regions of extreme obscuration?  E.g., H 2 O, HC 3 N 32 Fingerprinting Ultraluminous Infrared Galaxies (Costagliola et al., submitted)

Outline   Molecular gas in (U)LIRGs (L IR > 10 11(12) L  )   The CO rotational ladder as a PDR/XDR diagnostic   What do H 2 O and other lines tell us?   Outlook 33 Fingerprinting Ultraluminous Infrared Galaxies

1) New Herschel data e.g., Arp299A:   CO, H 2 O, [C I], [N II], CH + similar to Mrk231   OH + emission detected but no H 2 O +   A few “new” lines 34 Fingerprinting Ultraluminous Infrared Galaxies

2) Connection with high redshift   Multi-line approach is a key diagnostic for ALMA   High-J CO lines probe high-z black hole formation (e.g., Spaans & Meijerink 2008, Schleicher et al., 2010)   H 2 O, OH +, H 2 O + measures local infrared radiation field and ionizing radiation (follow-up with IRAM/PdBI at z=3.9 proposed)   Can we derive f Edd M BH using modeling of the CO ladder? 35 Fingerprinting Ultraluminous Infrared Galaxies

3) Radiative feedback In progress: more detailed model, Including XDR and PDRs, taking into account all data  measure radiative feedback by deriving the X-ray luminosity deposited in the circumnuclear medium   derive mechanical feedback due to radiation pressure   Can this drive the molecular outflows observed from Mrk231? See also Fischer talk 36 Fingerprinting Ultraluminous Infrared Galaxies (Feruglio et al., 2010) (Fischer et al., 2010)

Summary   CO ladder provides a diagnostic to separate star formation from AGN power in dusty galaxies, but accurate measurements of the “complete” CO ladder are needed.   CO can be an important cooling channel in luminous galaxies   H 2 O lines turn out to be radiatively excited and therefore probe the local infrared radiation field   H 2 O lines do not appear to be an important coolant for the warm molecular ISM   Prospects for probing radiative and mechanical feedback using the CO ladder and H 2 O lines are being explored   H 2 O +, OH + : local radiation environment (X-rays, cosmic rays)   All of these will be tools for the high-z universe with ALMA 37 Fingerprinting Ultraluminous Infrared Galaxies