Geriatric Pharmacotherapy

Slides:



Advertisements
Similar presentations
Prescribing in Disease Clive Roberts. So what are drugs good at treating (or preventing)? Pain Inflammation Infection Fluid retention Heart problems High.
Advertisements

Problems in Geriatric Pharmacotherapy
Principles of Drug Use in the Elderly Alastair Stephens Sophie Rozwadowski.
UMMS CRIT Module II: Pharmacist Case Review Abir O. Kanaan, PharmD Associate Professor of Pharmacy Practice Massachusetts College of Pharmacy and Health.
Polypharmacy in the Elderly
Polypharmacy of Older Adults
Patterns of Prescription Drug Use among Older Adults Arlene S. Bierman, MD, MS Ontario Women’s Health Council Chair in Women’s Health Centre for Research.
Copyright © 2015 Cengage Learning® Chapter 27 Drugs and Older Adults.
CHAPTER 3 Life Span Considerations
PHARMACOLOGY AND THE OLDER PATIENT David J. Mokler, Ph.D. Department of Pharmacology College of Osteopathic Medicine University of New England.
Pharmacotherapy in the Elderly Paola S. Timiras May, 2007.
Pharmacotherapy in the Elderly Judy Wong
Dr AZZA ELSHERBINY Assistant professor of pharmacology.
Kidney Function Tests Rana Hasanato, MD, KSFCB
Includes adults >65 years old Fastest growing population in US and in the majority of developed nations. 20% of hospitalizations for those >65 are due.
Pharmacology in the Elderly. Pharmacological Challenges in the Elderly  Pharmacokinetic changes  Pharmacodynamic changes  Multiple co-morbidities 
Geriatric Pharmacotherapy
Yasar Kucukardali Professor, Internal Medicine Yeditepe University.
Medication Use and Safety in the Elderly
Supported by DHHS/HRSA/BHPr/Division of Nursing Grant #D62HP06858 Best Nursing Practices in Care for Older Adults ELDER Project Fairfield University School.
Factors Affecting Drug Activity Chapter 11 Pages
POLYPHARMACY Pio L. Oliverio, MD Fellow, Geriatrics SVCMC, Jamaica, NY
non steroidal anti inflammatory drugs
Copyright © 2013, 2010 by Saunders, an imprint of Elsevier Inc. Chapter 11 Drug Therapy in Geriatric Patients.
Food-Drug Interactions Chapter 19. © 2004, 2002 Elsevier Inc. All rights reserved. Key Terms n Bioavailability: degree to which a drug or other substance.
Objectives Describe the main physiological changes that occur with aging Identify factors affecting absorption and distribution with the geriatric client.
Dose Adjustment in Renal and Hepatic Disease
Caring for Older Adults Holistically, 4th Edition Chapter Nineteen Pharmacology and Its Significance for Older Adults.
Excretion of Drugs By the end of this lecture, students should be able to Identify main and minor routes of Excretion including renal elimination and biliary.
Quantitative Pharmacokinetics
1 Arch Intern Med.2003;163: JAMA.2006;296: The Most Common Cause of Adverse Medication Events that Result in Emergency Department.
Problems of Polypharmacy
Kidney Function Tests.
Copyright © 2013, 2010 by Saunders, an imprint of Elsevier Inc. Chapter 8 Individual Variation in Drug Responses.
PLASMA HALF LIFE ( t 1/2 ).  Minimum Effective Concentration (MEC): The plasma drug concentration below which a patient’s response is too small for clinical.
Pharmacology Department
Age Changes By Sue Henderson.
Drug Therapy in the Elderly
Medication Use and Safety in the Elderly Amy N. Thompson, PharmD, BCPS ACOVE 5.
Excretion of Drugs By the end of this lecture, students should be able to Identify main and minor routes of Excretion including renal elimination and biliary.
INTRODUCTION CLINICAL PHARMACOKINETICS
TDM Therapeutic Drug Monitoring
Mosby items and derived items © 2007, 2005, 2002 by Mosby, Inc., an affiliate of Elsevier Inc. CHAPTER 3 Life Span Considerations.
Impact of Multidisciplinary Team Care on Older People with Polypharmacy Liang-Kung Chen Center for Geriatrics and Gerontology Taipei Veterans General Hospital.
Foundation Knowledge and Skills
An unpleasant sensory or emotional experience associated with actual or potential tissue damage The World Health Organization (WHO) has stated that pain.
METABOLISME DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC UNIVERSITAS SUMATERA UTARA dr. Yunita Sari Pane.
DOSAGE ADJUSTMENT IN RENAL AND HEPATIC DISEASES Course Title : Biopharmaceutics and Pharmacokinetics – II Course Teacher : Zara Sheikh.
Drug efficacy is questioned.. Variation in drug responses.
Medication Management in the Older Patient. Older adults are more likely to have an Adverse Drug Reaction More likely to be on 5 or more medications Hazzard,
Copyright © 2016 by Elsevier, Inc. All rights reserved. Geropharmacology.
Objective 2 Discuss recent data, guidelines, and counseling points pertaining to the older adults with diabetes.
Drug Therapy in Geriatric Patients
Kidney Function Tests.
What’s New in Medication Management: Focus on Older Adults and Caregivers Tuesday, April 30, :00 Noon CDT Mike Varnell, RPh, CSA (214)
Factors affecting Drug Activity
Pharmacokinetics & Drug Dosing
Pharmacology KNH 413 Most Americans are not meeting RDA. Nutrient deficiencies worsen when medication is taken.
Pharmacology KNH 413 Most Americans are not meeting RDA. Nutrient deficiencies worsen when medication is taken.
Pharmacology KNH 413 Most Americans are not meeting RDA. Nutrient deficiencies worsen when medication is taken.
ROLE OF HEALTHCARE PROVIDER IN GERIATRIC COUNSELING
1 Concentration-time curve
Pharmacology KNH 413 Most Americans are not meeting RDA. Nutrient deficiencies worsen when medication is taken.
Pharmacology KNH 413 Most Americans are not meeting RDA. Nutrient deficiencies worsen when medication is taken.
Clinical Pharmacokinetics
Pharmacology KNH 413 Most Americans are not meeting RDA. Nutrient deficiencies worsen when medication is taken.
Pharmacotherapy in Older Adults
Pharmacology KNH 413 Most Americans are not meeting RDA. Nutrient deficiencies worsen when medication is taken.
POLYPHARMACY.
Presentation transcript:

Geriatric Pharmacotherapy Linda Farho, Pharm.D. University of Nebraska Medical Center College of Pharmacy

Objectives Understand key issues in geriatric pharmacotherapy Understand the effect age on pharmacokinetics and pharmacodynamics Discuss risk factors for adverse drug events and ways to mitigate them Understand the principles of drug prescribing for older patients

The Aging Imperative Persons aged 65y and older constitute 13% of the population and purchase 33% of all prescription medications By 2040, 25% of the population will purchase 50% of all prescription drugs

Challenges of Geriatric Pharmacotherapy New drugs available each year FDA approved and off-label indications are expanding Changing managed-care formularies Advanced understanding of drug-drug interactions Increasing popularity of “nutriceuticals” Multiple co-morbid states Polypharmacy Medication compliance Effects of aging physiology on drug therapy Medication cost

Pharmacokinetics (PK) Absorption bioavailability: the fraction of a drug dose reaching the systemic circulation Distribution locations in the body a drug penetrates expressed as volume per weight (e.g. L/kg) Metabolism drug conversion to alternate compounds which may be pharmacologically active or inactive Elimination a drug’s final route(s) of exit from the body expressed in terms of half-life or clearance

Effects of Aging on Absorption Rate of absorption may be delayed Lower peak concentration Delayed time to peak concentration Overall amount absorbed (bioavailability) is unchanged

Hepatic First-Pass Metabolism For drugs with extensive first-pass metabolism, bioavailability may increase because less drug is extracted by the liver Decreased liver mass Decreased liver blood flow

Factors Affecting Absorption Route of administration What it taken with the drug Divalent cations (Ca, Mg, Fe) Food, enteral feedings Drugs that influence gastric pH Drugs that promote or delay GI motility Comorbid conditions Increased GI pH Decreased gastric emptying Dysphagia

Effects of Aging on Volume of Distribution (Vd) Aging Effect Vd Effect Examples  body water  Vd for hydrophilic drugs ethanol, lithium  lean body mass  Vd for for drugs that bind to muscle digoxin  fat stores  Vd for lipophilic drugs diazepam, trazodone  plasma protein (albumin)  % of unbound or free drug (active) diazepam, valproic acid, phenytoin, warfarin  plasma protein (1-acid glycoprotein)  % of unbound or free drug (active) quinidine, propranolol, erythromycin, amitriptyline

Aging Effects on Hepatic Metabolism Metabolic clearance of drugs by the liver may be reduced due to: decreased hepatic blood flow decreased liver size and mass Examples: morphine, meperidine, metoprolol, propranolol, verapamil, amitryptyline, nortriptyline

Metabolic Pathways Pathway Effect Examples Phase I: oxidation, hydroxylation, dealkylation, reduction Conversion to metabolites of lesser, equal, or greater diazepam, quinidine, piroxicam, theophylline Phase II: glucuronidation, conjugation, or acetylation Conversion to inactive metabolites lorazepam, oxazepam, temazepam ** NOTE: Medications undergoing Phase II hepatic metabolism are generally preferred in the elderly due to inactive metabolites (no accumulation)

Other Factors Affecting Drug Metabolism Gender Comorbid conditions Smoking Diet Drug interactions Race Frailty

Concepts in Drug Elimination Half-life time for serum concentration of drug to decline by 50% (expressed in hours) Clearance volume of serum from which the drug is removed per unit of time (mL/min or L/hr) Reduced elimination  drug accumulation and toxicity

Effects of Aging on the Kidney Decreased kidney size Decreased renal blood flow Decreased number of functional nephrons Decreased tubular secretion Result:  glomerular filtration rate (GFR) Decreased drug clearance: atenolol, gabapentin, H2 blockers, digoxin, allopurinol, quinolones

Estimating GFR in the Elderly Creatinine clearance (CrCl) is used to estimate glomerular rate Serum creatinine alone not accurate in the elderly  lean body mass  lower creatinine production  glomerular filtration rate Serum creatinine stays in normal range, masking change in creatinine clearance

Determining Creatinine Clearance Measure Time consuming Requires 24 hr urine collection Estimate Cockroft Gault equation (IBW in kg) x (140-age) ------------------------------ x (0.85 for females) 72 x (Scr in mg/dL)

Example: Creatinine Clearance vs. Age in a 5’5”, 55 kg Woman 30 1.1 90 41 70 53 50 65 CrCl Scr Age

Limitations in Estimating CrCl Not all persons experience significant age-related decline in renal function Some patient’s muscle mass is reduced beyond that of normal aging Suggest using 1 mg/dL if serum creatinine is less than normal (<0.7 mg/dL) Not precise, may underestimate actual CrCl

Pharmacodynamics (PD) Definition: the time course and intensity of pharmacologic effect of a drug Age-related changes:  sensitivity to sedation and psychomotor impairment with benzodiazepines  level and duration of pain relief with narcotic agents  drowsiness and lateral sway with alcohol  HR response to beta-blockers  sensitivity to anti-cholinergic agents  cardiac sensitivity to digoxin

PK and PD Summary PK and PD changes generally result in decreased clearance and increased sensitivity to medications in older adults Use of lower doses, longer intervals, slower titration are helpful in decreasing the risk of drug intolerance and toxicity Careful monitoring is necessary to ensure successful outcomes

Optimal Pharmacotherapy Balance between overprescribing and underprescribing Correct drug Correct dose Targets appropriate condition Is appropriate for the patient Avoid “a pill for every ill” Always consider non-pharmacologic therapy

Consequences of Overprescribing Adverse drug events (ADEs) Drug interactions Duplication of drug therapy Decreased quality of life Unnecessary cost Medication non-adherence

Adverse Drug Events (ADEs) Responsible for 5-28% of acute geriatric hospital admissions Greater than 95% of ADEs in the elderly are considered predictable and approximately 50% are considered preventable Most errors occur at the ordering and monitoring stages

Most Common Medications Associated with ADEs in the Elderly Opioid analgesics NSAIDs Anticholinergics Benzodiazepines Also: cardiovascular agents, CNS agents, and musculoskeletal agents Adverse Drug Reaction Risk Factors in Older Outpatients. Am J Ger Pharmacotherapy 2003;1(2):82-89.

The Beers Criteria High Potential for Severe ADE Less Severe ADE amitriptyline chlorpropamide digoxin >0.125mg/d disopyramide GI antispasmodics meperidine methyldopa pentazocine ticlopidine antihistamines diphenhydramine dipyridamole ergot mesyloids indomethacin muscle relaxants

Patient Risk Factors for ADEs Polypharmacy Multiple co-morbid conditions Prior adverse drug event Low body weight or body mass index Age > 85 years Estimated CrCl <50 mL/min

Prescribing Cascade Drug 1 Drug 2 Drug 3 ADE interpreted as new medical condition Drug 2 ADE interpreted as new medical condition Drug 3 Rochon PA, Gurwitz JH. Optimizing drug treatment in elderly people: the prescribing cascase. BMJ 1997;315:1097.

Drug-Drug Interactions (DDIs) May lead to adverse drug events Likelihood  as number of medications  Most common DDIs: cardiovascular drugs psychotropic drugs Most common drug interaction effects: confusion cognitive impairment hypotension acute renal failure

Concepts in Drug-Drug Interactions Absorption may be  or  Drugs with similar effects can result additive effects Drugs with opposite effects can antagonize each other Drug metabolism may be inhibited or induced

Common Drug-Drug Interactions Combination Risk ACE inhibitor + potassium Hyperkalemia ACE inhibitor + K sparing diuretic Hyperkalemia, hypotension Digoxin + antiarrhythmic Bradycardia, arrhythmia Digoxin + diuretic Antiarrhythmic + diuretic Electrolyte imbalance; arrhythmia Diuretic + diuretic Electrolyte imbalance; dehydration Benzodiazepine + antidepressant Benzodiazepine + antipsychotic Sedation; confusion; falls CCB/nitrate/vasodilator/diuretic Hypotension Doucet J, Chassagne P, Trivalle C, et al. Drug-drug interactions related to hospital admissions in older adults: a prospective study of 1000 patients. J Am Geriatr Soc 1996;44(9):944-948.

Drug-Disease Interactions Obesity alters Vd of lipophilic drugs Ascites alters Vd of hydrophilic drugs Dementia may  sensitivity, induce paradoxical reactions to drugs with CNS or anticholinergic activity Renal or hepatic impairment may impair metabolism and excretions of drugs Drugs may exacerbate a medical condition

Common Drug-Disease Interactions Combination Risk NSAIDs + CHF Thiazolidinediones + CHF Fluid retention; CHF exacerbation BPH + anticholinergics Urinary retention CCB + constipation Narcotics + constipation Anticholinergics + constipation Exacerbation of constipation Metformin + CHF Hypoxia; increased risk of lactic acidosis NSAIDs + gastropathy Increased ulcer and bleeding risk NSAIDs + HTN Fluid retention; decreased effectiveness of diuretics

Principles of Prescribing in the Elderly Avoid prescribing prior to diagnosis Start with a low dose and titrate slowly Avoid starting 2 agents at the same time Reach therapeutic dose before switching or adding agents Consider non-pharmacologic agents

Prescribing Appropriately Determine therapeutic endpoints and plan for assessment Consider risk vs. benefit Avoid prescribing to treat side effect of another drug Use 1 medication to treat 2 conditions Consider drug-drug and drug-disease interactions Use simplest regimen possible Adjust doses for renal and hepatic impairment Avoid therapeutic duplication Use least expensive alternative

Preventing Polypharmacy Review medications regularly and each time a new medication started or dose is changed Maintain accurate medication records (include vitamins, OTCs, and herbals) “Brown-bag”

Non-Adherence Rate may be as high as 50% in the elderly Factors in non-adherence Financial, cognitive, or functional status Beliefs and understanding about disease and medications

Enhancing Medication Adherence Avoid newer, more expensive medications that are not shown to be superior to less expensive generic alternatives Simplify the regimen Utilize pill organizers or drug calendars Educate patient on medication purpose, benefits, safety, and potential ADEs

Summary Successful pharmacotherapy means using the correct drug at the correct dose for the correct indication in an individual patient Age alters PK and PD ADEs are common among the elderly Risk of ADEs can be minimized by appropriate prescribing

Questions

Case 1 A 73 y/o woman is seen for a routine visit: Blood pressure is 134/84 mmHg and HgbA1c is 8.1% Metformin is increased to 500mg bid and other daily medications are continued: amlodipine 5mg qd, timolol ophthalmic 1 drop ou bid, aspirin 81mg qd, and calcium citrate 500mg qd At 6 month follow-up, blood pressure is 130/82 mmHg, finger stick BS is 93 mg/dL, and HgbA1c is 9.2%

Case 1 Which of the following is the most likely explanation for the increase in HgA1c? Incorrect choice of antidiabetic medication Inadequate dose of antidiabetic medication Long-term non-adherence with medication Altered pharmacokinetics Altered drug absorption

Case 1 Which of the following is the most likely explanation for the increase in HgA1c? Incorrect choice of antidiabetic medication Inadequate dose of antidiabetic medication Long-term non-adherence with medication Altered pharmacokinetics Altered drug absorption

Case 2 A 68 y/o woman has a hx of Parkinson’s disease, hypertension, and osteoarthritis Daily medications are carbidopa 25mg/levodopa 100mg tid, selegiline 5mg bid, losartan 50mg, celecoxib 200mg qd, and MVI qd In the past 3 weeks, she has taken diphenhydramine at bedtime for insomnia The patient now reports the onset of urinary incontinence

Case 2 Which of the following is the most appropriate intervention? Discontinue celecoxib Discontinue diphenhydramine Discontinue losartan Substitute fosinopril for losartan Begin tolterodine

Case 2 Which of the following is the most appropriate intervention? Discontinue celecoxib Discontinue diphenhydramine Discontinue losartan Substitute fosinopril for losartan Begin tolterodine

Case 3 An 83 y/o woman is brought to the ER because of dizziness on standing, followed by brief LOC; the patient now feels well She has hypertension but is otherwise healthy Daily medications: metoprolol 50mg/d, captopril 25 mg/d, and nitroglycerin 0.4mg SL prn BP is 130/70 mmHg sitting and 100/60 standing; PE is otherwise normal; CBC, BUN, ECG, CMP are all normal

Case 3 Which of the following is the most likely cause of this syncopal episode? Sepsis Drug-related event Hypovolemic hypotensive episode Cardiogenic shock Unidentifiable cause

Case 3 Which of the following is the most likely cause of this syncopal episode? Sepsis Drug-related event Hypovolemic hypotensive episode Cardiogenic shock Unidentifiable cause