Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory III. Allelic, Genic, and Environmental Interactions.

Slides:



Advertisements
Similar presentations
The lac operon.
Advertisements

Chapter 18 Regulation of Gene Expression in Prokaryotes
2 Bacterial Genetic Recombination What is the main source of genetic recombination in bacteria? Mutations What are the other sources of recombination?
AP Biology Control of Prokaryotic (Bacterial) Genes.
Ch 18 Gene Regulation. Consider: A multicellular organism (Pliny) Do each of his cells have the same genes? Yes, with an exception: germ cells are haploid.
1 GENE CONTROL LACTOSE.
XII. Gene Regulation.
Regulation and Control of Metabolism in Bacteria
Medical Genetics & Genomics
Lac Operon.
Genetic Regulatory Mechanisms
1 The Lac Operon 1961, Jacob and Monod E. coli and other bacteria Bacterial Genes Many genes constitutively expressed “housekeeping” genes Other genes.
Announcements 1. Reading Ch. 15: skim btm Look over problems Ch. 15: 5, 6, 7.
13 The Genetics of Viruses and Prokaryotes. 13 The Genetics of Viruses and Prokaryotes 13.1 How Do Viruses Reproduce and Transmit Genes? 13.2 How Is Gene.
Chapter 18 Regulation of Gene Expression.
To understand the concept of the gene function control. To understand the concept of the gene function control. To describe the operon model of prokaryotic.
The Chapter 15 Homework is due on Wednesday, February 4 th at 11:59 pm.
Bacterial Keys to Success Respond quickly to environmental changes –Simultaneous transcription and translation Avoid wasteful activities by using biochemical.
REGULATION of GENE EXPRESSION. GENE EXPRESSION all cells in one organism contain same DNA every cell has same genotype phenotypes differ skin cells have.
Differential Expression of Genes  Prokaryotes and eukaryotes precisely regulate gene expression in response to environmental conditions  In multicellular.
Gene regulation  Two types of genes: 1)Structural genes – encode specific proteins 2)Regulatory genes – control the level of activity of structural genes.
Draw 8 boxes on your paper
Goals of today’s lecture 1)Describe the basics of prokaryotic gene regulation -operons, negative and positive regulation 2)Illustrate the use of genetics.
GENE REGULATION. Virtually every cell in your body contains a complete set of genes Virtually every cell in your body contains a complete set of genes.
XII. Gene Regulation. - Overview: All cells in an organism contain the same genetic information; the key to tissue specialization is gene regulation –
Prokaryotic Regulation Regulation of Gene Expression – Part I Spring Althoff Reference: Mader & Windelspecht Ch. 13) Lec 18.
Gene Expression and Regulation
Gene Regulation Gene regulation in bacteria Cells vary amount of specific enzymes by regulating gene transcription – turn genes on or turn genes off.
Translation mRNA exits the nucleus through the nuclear pores In the cytoplasm, it joins with the other key players to assemble a polypeptide. The other.
Sources of VariationAgents of Change MutationN.S. RecombinationDrift - crossing overMigration - independent assortmentMutation Non-random Mating VARIATION.
Bacterial Gene Expression and Regulation
Gene Regulation Gene Regulation in Prokaryotes – the Jacob-Monad Model Gene Regulation in Prokaryotes – the Jacob-Monad Model certain genes are transcribed.
1 Gene regulation in Prokaryotes Bacteria were models for working out the basic mechanisms, but eukaryotes are different. Some genes are constitutive,
Gene Regulation, Part 1 Lecture 15 Fall Metabolic Control in Bacteria Regulate enzymes already present –Feedback Inhibition –Fast response Control.
Regulation of Gene Expression Prokaryotes
CONTROL OF GENE EXPRESSION The development of an organism must involve the switching on and off of genes in an orderly manner. This is not fully understood.
REVIEW SESSION 5:30 PM Wednesday, September 15 5:30 PM SHANTZ 242 E.
1 Gene Regulation Organisms have lots of genetic information, but they don’t necessarily want to use all of it (or use it fully) at one particular time.
How Does A Cell Know? Which Gene To Express Which Gene To Express& Which Gene Should Stay Silent? Which Gene Should Stay Silent?
Gene Expression and Regulation
© 2011 Pearson Education, Inc. Lectures by Stephanie Scher Pandolfi BIOLOGICAL SCIENCE FOURTH EDITION SCOTT FREEMAN 17 Control of Gene Expression in Bacteria.
Conversation Starters 1. Typically, a single gene codes for _____. 2. What do you think might be the function of a “repressor” protein? 3. How does RNA.
José A. Cardé Serrano, PhD Universidad Adventista de las Antillas Biol 223 Genética Agosto 2010.
Chapter 13: Gene Regulation. The Big Picture… A cell contains more genes than it expresses at any given time – why? Why are cells in multicellular organisms.
Gene expression in prokaryotes. Operon system One promoter can regulate many genes ?What about eukaryotes.
Control of Metabolic Pathways Higher Human Biology Unit 1 – Section 6 Metabolic Pathways.
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
Chapter 15. I. Prokaryotic Gene Control  A. Conserves Energy and Resources by  1. only activating proteins when necessary  a. don’t make tryptophan.
Higher Human Biology Subtopic 6 (b)
Control of Gene Expression
Lac Operon Lactose is a disaccharide used an energy source for bacteria when glucose is not available in environment Catabolism of lactose only takes place.
Regulation of Gene Expression in Bacteria and Their Viruses
Lect 16: Lac Operon.
Control of Gene Expression
Lac Operon.
Regulation of Gene Expression
Regulation of Gene Expression
Heredity, Gene Regulation, and Development
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes
Control of Prokaryotic (Bacterial) Genes Different from Eukaryotes!
Chapter 15 Operons.
Gene Regulation certain genes are transcribed all the time – constitutive genes synthesis of some proteins is regulated and are produced only when needed.
The control of gene expression enable individual
Control of Prokaryotic (Bacterial) Genes
Gene Regulation in Prokaryotes
mitosis Gene Regulation A. Overview
Principles of Molecular Biology
Objective 3: TSWBAT recognize the processes by which bacteria respond to environmental changes by regulating transcription.
13.4 Gene regulation 5/16/19 TB page
Presentation transcript:

Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory III. Allelic, Genic, and Environmental Interactions IV. Sex Determination and Sex Linkage V. Linkage VI. Mutation VII. Gene Regulation

Heredity, Gene Regulation, and Development I. Mendel's Contributions II. Meiosis and the Chromosomal Theory III. Allelic, Genic, and Environmental Interactions IV. Sex Determination and Sex Linkage V. Linkage VI. Mutation VII. Gene Regulation A. Overview All cells in an organism contain the same genetic information; the key to tissue specialization is gene regulation – reading some genes in some cells and other genes in other cells.

VII. Gene Regulation A. Overview All cells in an organism contain the same genetic information; the key to tissue specialization is gene regulation – reading some genes in some cells and other genes in other cells. B. Terminology Inducers turn a gene on… Repressors turn a gene off…

An “operon” is a region of genes that are regulated as a unit – it typically encodes > 1 protein involved in a particular metabolic pathway. VII. Gene Regulation C. The lac Operon in E. coli

VII. Gene Regulation C. The lac Operon in E. coli When lactose is present, E. coli produce three enzymes involved in lactose metabolism. Lactose is broken into glucose and galactose, and galactose is modified into glucose, too. Glucose is then metabolized in aerobic respiration pathways to harvest energy (ATP). When lactose is absent, E. coli does not make these enzymes and saves energy and amino acids. How do these little bacteria KNOW? : )

Lac Y - permease – increases absorption of lactose Lac Z – B-galactosidase – cleaves lactose into glucose and galactose Lac A – transacetylase – may code for enzymes that detoxify waste products of lactose metabolism. VII. Gene Regulation C. The lac Operon in E. coli

VII. Gene Regulation C. The lac Operon in E. coli 1960 – Jacob and Monod proposed that this was an inducible system under negative control. (Because the presence of the substrate INDUCES transcription by SHUTTING OFF regulation). RepressorRNA Poly Repressor Gene Operator

VII. Gene Regulation C. The lac Operon in E. coli 1960 – Jacob and Monod proposed that this was an inducible system under negative control. (Because the presence of the substrate INDUCES transcription by SHUTTING OFF regulation). LACTOSE

VII. Gene Regulation C. The lac Operon in E. coli 1960 – Jacob and Monod proposed that this was an inducible system under negative control. (Because the presence of the substrate INDUCES transcription by SHUTTING OFF regulation). LACTOSE The binding of lactose changes the shape of the repressor (allosteric reaction) and it can’t bind to the operator.

VII. Gene Regulation C. The lac Operon in E. coli Mutant analyses confirmed these results:

VII. Gene Regulation C. The lac Operon in E. coli Mutant analyses confirmed these results:

VII. Gene Regulation C. The lac Operon in E. coli Mutant analyses confirmed these results:

VII. Gene Regulation C. The lac Operon in E. coli But it is even more complicated… if glucose AND lactose are present, the operon is OFF. This is adaptive, because it’s glucose the cell needs. If glucose is present, there is no benefit to break lactose down to get it. BUT HOW?

VII. Gene Regulation C. The lac Operon in E. coli Within the promoter, there is a binding site for a Catabolic Activating Protein – basically a “transcription factor”. CAP needs to bind in order for the RNA Polymerase to bind. Cyclic-AMP activates CAP, causing an allosteric reaction so it can bind the promoter., lactose present

VII. Gene Regulation C. The lac Operon in E. coli Within the promoter, there is a binding site for a Catabolic Activating Protein – basically a “transcription factor”. CAP needs to bind in order for the RNA Polymerase to bind. Cyclic-AMP activates CAP, causing an allosteric reaction so it can bind the promoter. So, the binding of CAP stimulates transcription, exerting positive control., lactose present

VII. Gene Regulation C. The lac Operon in E. coli When Glucose is present, the concentration of c-AMP declines, it does not bind to CAP, and CAP does not bind to the Promoter; so the RNA Poly does not bind and the genes are off., lactose present

VII. Gene Regulation C. The lac Operon in E. coli When Glucose is present, the concentration of c-AMP declines, it does not bind to CAP, and CAP does not bind to the Promoter; so the RNA Poly does not bind and the genes are off. So, the lac operon is regulated first by the presence/absence of glucose; the needed nutrient… and then by the presence of lactose, which could be metabolized to produce glucose if necessary.

VII. Gene Regulation C. The lac Operon in E. coli D. Summary These are the transcription factors that bind to enhancer and silencer regions of the human metallothionien IIA gene promoter region!! - What does having all these modifiers allow for?

VII. Gene Regulation C. The lac Operon in E. coli D. Summary - Many proteins can be made from the same gene, by splicing the m-RNA differently. Humans have 20-30K genes, but several 100,000 proteins! A calcium regulator in the thyroid A hormone made in the brain

VII. Gene Regulation C. The lac Operon in E. coli D. Summary - miRNA (microRNA): quite similar, but as ss-RNA they bind m-RNA and just stop translation. They are involved in developmental regulation.

VII. Gene Regulation C. The lac Operon in E. coli D. Summary - Post-translational processing

zygote mitosis