PACS IIDR 01/02 Mar 2001 Instrument Overview1 PACS Instrument Design Description and System Performance A. Poglitsch.

Slides:



Advertisements
Similar presentations
HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
Advertisements

Observational techniques meeting #7. Detectors CMOS (active pixel arrays) Arrays of pixels, each composed on a photodetector (photodiode), amplifier,
PACS IHDR 12/13 Nov 2003 PACS Instrument Overview1 Instrument Design/Development Overview and System Performance PACS Instrument Overview A.Poglitsch MPE.
Test Cryostat, OGSE and MGSE PACS IHDR: MPE 12/13 Nov 2003 AIV1 PACS Test Cryostat, OGSE and MGSE Gerd Jakob MPE.
1 PHYSICS Progress on characterization of a dualband IR imaging spectrometer Brian Beecken, Cory Lindh, and Randall Johnson Physics Department, Bethel.
Impact of Cost Savings Ideas on NGAO Instrumentation December 19, 2008 Sean Adkins.
Direction-detection spectrometer concepts the CCAT Matt Bradford + others 24 October 2006, in progress.
NGAO Science Instruments Build to Cost Status February 5, 2009 Sean Adkins.
Interference and Diffraction
Astronomical Spectroscopy
KMOS Instrument Science Team Review Instrument overview.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
Optical characteristics of the EUV spectrometer (EUS) for SOLO L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia (INFM) Department.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
CEA / PACS SVR phase 2 Photometer results from the first part of the FM ILT CEA - MPE - NHSC.
1HSSPG Georgia Tech High Speed Image Acquisition System for Focal-Plane-Arrays Doctoral Dissertation Presentation by Youngjoong Joo School of Electrical.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
PACS IIDR 01/02 Mar 2001 Instrument Interfaces1 PACS FPU Opto-mechanical Design Overview and Interfaces J. Schubert MPE.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
Current Status of SPICA Focal Plane Instruments October 19, 2009 Hideo Matsuhara (ISAS/JAXA) & FPI team.
15 October Observational Astronomy Direct imaging Photometry Kitchin pp ,
PACS IBDR 27/28 Feb 2002 Optical System Design1 N. Geis MPE.
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
FM-ILT Results: Mechanisms FM1 Chopper and Calibration Sources Markus Nielbock (MPIA) Babar Ali (IPAC) Jeroen Bouwman (MPIA) Helmut Dannerbauer (MPIA)
Herschel Space ObservatoryPACS Science Verification ReviewMPE 22/23 June 2006 GJ / MPE 1 PACS Test Facility Capabilities – Cryogenics and OGSE Gerd Jakob.
NIRSpec Operations Concept Michael Regan(STScI), Jeff Valenti (STScI) Wolfram Freduling(ECF), Harald Kuntschner(ECF), Robert Fosbury (ECF)
PACS SVR 22/23 June 2006 PACS FPU Subunits1 FM FPU Subunits A. Poglitsch.
ASTRO-F Survey as an Input Catalogue for FIRST Takao Nakagawa (ISAS, Japan) & ASTRO-F Team.
PACS SVR-II 18 January 2007 FM ILT overview1 The PACS FM ILT Phase I overview on actual test execution and analysis Eckhard Sturm MPE.
PACS Hitchhiker’s Guide to Herschel Archive Workshop – Pasadena 6 th - 10 th Oct 2014 The SPIRE Photometer and its Observing Modes Bernhard Schulz (NHSC/IPAC)
MIRI Optical System CDR, 6 th & 7 th December 2006 Mid InfraRed Instrument 07-1 Optical System Critical Design Review (CDR) TIPS Presentation: Margaret.
PACS Spectrometer Spatial Calibration plan in PV phase A.Contursi D. Lutz and U. Klaas.
PACS SVR 22/23 June 2006 Instrument Performance Prediction1 PACS Instrument Model and Performance Prediction A. Poglitsch.
KMOS Instrument Overview & Data Processing Richard Davies Max Planck Institute for Extraterrestrial Physics  What does KMOS do?  When will it do it?
PACS IBDR 27/28 Feb 2002 PACS Instrument Overview1 Instrument Design/Development Status and System Performance PACS Instrument Overview A.Poglitsch MPE.
Current Status of SPICA FPI Mechanical I/F & resources April 6 th 2010 Hideo Matsuhara (ISAS/JAXA) & FPI team.
Optimisation of the PACS Chopper Markus Nielbock Ulrich Klaas Jeroen Bouwman Helmut Dannerbauer Jürgen Schreiber Ulrich Grözinger.
PACS IBDR 27/28 Feb 2002 PACS PI Summary1 Where we are and where to go… A. Poglitsch MPE.
Spectroscopy with PACS M82 PACS line imaging from the SHINING team (Contursi et al First Results workshop talk) Phil Appleton and Dario Fadda for.
PACS SVR 22/23 June 2006 Scientific/Performance Requirements1 PACS Science and Performance Requirements A. Poglitsch.
PACS page 1 NHSC Open Time Cycle 1 Observation Planning Workshop 3 rd - 4 th Jun 2010 – Bernhard Schulz SPIRE Overview Bernhard Schulz, Nanyao Lu, Kevin.
PACS SVR 2 18 Jan 2007 FM ILT: Spectrometer1 Spectrometer Performance H. Feuchtgruber, T. Müller, A. Poglitsch.
PVPhotFlux PACS Photometer photometric calibration MPIA PACS Commissioning and PV Phase Plan Review 21 st – 22 nd January 2009, MPE Garching Markus Nielbock.
PACS ICC Readiness Review MPE, July 3/ PACS Photometer PV Phase Plan 1 Status Report M. Nielbock: PACS PHOT PV Phase Plan Markus Nielbock (MPIA)
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Overview, Spectrometer Products and Processing Philosophy Phil Appleton on Behalf of PACS Team PACS IFU Spectrometer.
Astronomical Observational Techniques and Instrumentation
Herschel EQM – Results and Lessons Learnt6/7 Feb 2006 PACS Overall Analysis1 Overall PACS EQM IMT Analysis Contributions by PACS ICC.
PACS IBDR MPE 27/28 Feb 2002 AIV 1 PACS IBDR Test Cryostat and OGSE Gerd Jakob MPE.
The InGaAs IR Array of Chunghwa Telecom Laboratory Chueh-Jen Lin and Shiang-Yu Wang, Optics and Infrared Laboratory In 2006, Advanced Technology Laboratory.
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
PACS IIDR 01/02 Mar 2001 Optical System Design1 N. Geis MPE.
- page 1 July NHSC Mini-workshop PACS NASA Herschel Science Center PACS Spectrometer AORs Phil Appleton 1Roberta Paladini.
- page 1 PACS Phil Appleton on behalf of the NHSC/HSC and the PACS ICC ; especially Bart Vandenbussche and Pierre Royer (KUL Belgium) Instrument Performance.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
Spectrometer The instrument used for the astronomers MinGyu Kim
Astronomical Spectroscopic Techniques. Contents 1.Optics (1): Stops, Pupils, Field Optics and Cameras 2.Basic Electromagnetics –Math –Maxwell's equations.
# x pixels Geometry # Detector elements Detector Element Sizes Array Size Detector Element Sizes # Detector elements Pictorial diagram showing detector.
Astronomical Spectroscopic Techniques
Key Inputs / Requirements
Single Object & Time Series Spectroscopy with JWST NIRCam
ESAC 2017 JWST Workshop JWST User Documentation Hands on experience
Introduction to Spectroscopy
Overview Instrument Role Science Niches Consortium science
Astronomical Observational Techniques and Instrumentation
Observational Astronomy
Presentation transcript:

PACS IIDR 01/02 Mar 2001 Instrument Overview1 PACS Instrument Design Description and System Performance A. Poglitsch

PACS IIDR 01/02 Mar 2001 Instrument Overview2 Science Requirements Summarized in PACS Science Requirements Document Main scientific drivers –Investigations of the distant universe: galaxy formation and evolution - history of star formation and nuclear activity –Studies of star formation and the origin of the Initial Mass Function in our own Galaxy –Physics and chemistry of the interstellar medium, Galactic and extragalactic –Giant planets and the history of the Solar System Required observing capabilities –Imaging photometry in 3 bands in the µm range with requirements on sensitivity per detector and field of view –Imaging line spectroscopy in the µm (goal: µm) range with requirements on sensitivity per detector, spectral resolution and instantaneous bandwidth, and field of view

PACS IIDR 01/02 Mar 2001 Instrument Overview3 Instrument Requirements Summarized in PACS Instrument Requirements Document High-level requirements on design, performance, and operation of PACS instrument Two basic instrument modes/channels –Imaging photometry –Imaging line spectroscopy Optimization / trade-off for prime science objectives –definition of requirements which enable minimum mission –definition of goals which enhance the performance to strengthen the science of the mission Minimization of risk and complexity

PACS IIDR 01/02 Mar 2001 Instrument Overview4 Photometer Requirements Photometric bands with relative bandwidth  <2 Field of view and pixel scale note: equal f.o.v. in both bands is nearly a requirement Image quality –blur: telescope limited; distortion: ±1 pixel; alignment: <1/3 pixel

PACS IIDR 01/02 Mar 2001 Instrument Overview5 Photometer Requirements Sensitivity (point source detection) –requirement: 5 mJy (5  ), 1h of integration –goal: 3 mJy (5  ), 1h of integration Dynamic range –detection from 3 mJy to >1000 Jy (goal: 3000 Jy) –contrast of up to 1:500 in one field Post-detection bandwidth –requirement: Hz –goal: Hz Observing modes –pointed observations (fixed, raster) with chopping/nodding –line scans without chopping –line scans with chopping (fixed throw)

PACS IIDR 01/02 Mar 2001 Instrument Overview6 Photometer Requirements Calibration and photometric accuracy

PACS IIDR 01/02 Mar 2001 Instrument Overview7 Spectrometer Requirements Spectral coverage – µm –goal: continuous, no gaps Resolving power –R = Instantaneous bandwidth –  v = km/s Field of view and pixel scale –5 x 5 pixels –9”x9” ±10% pixel scale Image Quality –blur: telescope limited; distortion: ±1 pixel; alignment: <1/4 pixel

PACS IIDR 01/02 Mar 2001 Instrument Overview8 Spectrometer Requirements Sensitivity (point source detection) –requirement: 3x W/Hz 1/2 (5  ), 1h of integration –goal: 2x W/Hz 1/2 (5  ), 1h of integration Dynamic range –detection from ~1x W to > W –contrast of up to 1:100 (t.b.c.) in one field Post-detection bandwidth –requirement: 5 Hz –goal: 10 Hz Observing modes –line spectroscopy (line + baseline/continuum) chopped unchopped, with frequency switching –range spectroscopy (scan of arbitrary wavelength range); chopped

PACS IIDR 01/02 Mar 2001 Instrument Overview9 Spectrometer Requirements Calibration and photometric accuracy Spectrometer implementation –integral-field grating spectrometer –photoconductive detectors –only concept which can fulfill all requirements

PACS IIDR 01/02 Mar 2001 Instrument Overview10 Instrument Concept Imaging photometry –two bands simultaneously (60-90 or µm and µm) with dichroic beam splitter –two filled bolometer arrays (32x16 and 64x32 pixels) –point source detection limit ~3 mJy (5 , 1h) Integral field line spectroscopy –range µm with 5x5 pixels, image slicer, and long-slit grating spectrograph (R ~ 1500) –two 16x25 Ge:Ga photoconductor arrays (stressed/unstressed) –point source detection limit 2…8 x W/m 2 (5 , 1h) Focal Plane Footprint

PACS IIDR 01/02 Mar 2001 Instrument Overview11 Definition of the FOV for the Photometer Physical pixel size: 0.75 x 0.75 mm 2

PACS IIDR 01/02 Mar 2001 Instrument Overview12 Definition of the FOV for the Spectrometer 47” sampling Pixel scale has to be a compromise –small number of spatial pixels limits field of view –diffraction introduced by image slicer does not allow full sampling –large wavelength range requires compromise Physical optics analysis shows that 9.4”/pixel gives low enough diffraction losses (15% at 175 µm) with acceptable spatial resolution/ Full spatial sampling in the long- slightly offset pointings wave band with two,

PACS IIDR 01/02 Mar 2001 Instrument Overview x 0.78 arcmin x 3.0 arcmin 2 PACS Design: Focal Plane Footprint

PACS IIDR 01/02 Mar 2001 Instrument Overview14 FPU Functional Groups Common input optics –filter, focal plane splitter –chopper (observation/calibration) –calibration sources Photometer optical train –dichroic beam splitter –separate re-imaging optics for short-wavelength bands (60-90/90-130µm) long-wavelength band ( µm) Spectrometer optical train –image slicer unit for integral-field spectroscopy –anamorphic collimator –Littrow-mounted grating with actuator/position readout

PACS IIDR 01/02 Mar 2001 Instrument Overview15 FPU Functional Groups (cont.) –dichroic beam splitter for order separation –anamorphic re-imaging optics to independently match spatial and spectral resolution to pixel scale Photoconductor arrays (2; long/short wavelength) –detectors with fore optics –cryogenic readout electronics Bolometer arrays (2; long/short wavelength) –bolometer assemblies with readout electronics –common 0.3K cooler Band selectors –filters + exchange mechanism (photometer bands) –filters + exchange mechanism (grating orders)

PACS IIDR 01/02 Mar 2001 Instrument Overview16 FPU Layout Chopper sGe:GaDetector Red Spectrometer Blue Bolometer Red Bolometer Calibrator I and II 0.3 K Cooler Filter Wheel I Filter Wheel II Grating sGe:Ga Detector Blue Spectrometer Encoder Grating Drive Entrance Optics Photometer Optics Calibrator Optics Slicer Optics Spectrometer Optics

PACS IIDR 01/02 Mar 2001 Instrument Overview17 Optical Performance Optical design fulfills requirements regarding –field of view –spatial sampling –distortion –geometrical spot sizes (Strehl ratio) –alignment –internal calibration capability –chopping –spectral coverage and resolution –transmission / diffraction losses

PACS IIDR 01/02 Mar 2001 Instrument Overview18 PACS Ge:Ga Photoconductor Arrays 16x25 pixel filled arrays –25 linear modules –integrated cryogenic readout electronics 16 pixel stressed detector module Feed optics: light cone array

PACS IIDR 01/02 Mar 2001 Instrument Overview19 PACS Photoconductor Modules Ge:Ga photoconductors –unstressed: µm –stressed: µm –quantum efficiency > 30% confirmed through independent measurement Wavelength (µm) T=1.7K, P=9x W, t int =1 s, C int =10 pF NEP [W/  Hz] NEP vs. bias

PACS IIDR 01/02 Mar 2001 Instrument Overview20 Capacitive feedback transimpedance amplifier (CTIA) for each pixel, based on AC-coupled inverter stage in silicon CMOS technology 16 CTIAs multiplexed on each CRE chip for each linear detector module CRE chips integrated in detector modules Amplifier noise compatible with background- limited performance in spectroscopy Technical feasibility demonstrated In Out-A CfCf C AC CTIA architecture Analog Bus 18-Bit Shift Register Detectors Clock Switch Control Logic CA2CA18 Sync Reset Sample CA1 PACS Cryogenic Readout Electronics

PACS IIDR 01/02 Mar 2001 Instrument Overview21 PACS Short-Wave Bolometer Array Assembly Support 300 mK filter Strap 300 mK Mechanical interface Ribbon cable 300 mK (top view) (bottom view) 2 K buffer amplifiers 16 x 16 sub-array

PACS IIDR 01/02 Mar 2001 Instrument Overview22 Bolometer Arrays: 16x16 Subarray Demonstrator Pixel Interconnection circuit with reflectors I/C 1 Multiplexer I/C 2 MOS Followers will be integrated in the interconnection circuit in next models

PACS IIDR 01/02 Mar 2001 Instrument Overview23 Bolometer Arrays: Pixel -Mechanical suspension -Thermal link to the substrate -Electrical connection PACS short-wave bolometer pixel efficiency (calculated) pixel architecture

PACS IIDR 01/02 Mar 2001 Instrument Overview24 Bolometer Readout & Performance W/Hz 1/2

PACS IIDR 01/02 Mar 2001 Instrument Overview25 PACS Grating Diamond ruled reflection grating Optical size 320 x 80 mm Used in 1 st, 2 nd, and 3 rd order, angle range 48° ± 20° –1st order (red detector) µm –2nd order (blue detector) µm –3rd order (blue detector) µm Groove profile optimized for highest efficiency over all 3 orders using PCgrate full EM-code Cryogenic torquer motor drive Inductosyn angular resolver Grating efficiency (above) and resolution (below) 100 ms

PACS IIDR 01/02 Mar 2001 Instrument Overview26 PACS Chopper The technical feasibility of the PACS focal plane chopper has been shown Critical components (pivots, motor, sensor) have been predeveloped An experimentally verified simulation model was established, providing input data for optimization and allowing for precise chopper control

PACS IIDR 01/02 Mar 2001 Instrument Overview27 Filters/Dichroics Used for definition of photometric bands (photometer) and for selection of grating orders (spectrometer) Low-pass, high-pass, band-pass filters and dichroic beam splitters in multi-layer mesh technology Provided through contract with QMW as part of SPIRE/PACS technology exchange agreement Delivered filters fulfill or exceed transmission requirements Press tools Metal grids Spacers Filter support rings Manufacturing process: Air/vacuum gap filters use annular metal spacers Hot pressed polypropylene filters use dielectric spacers

PACS IIDR 01/02 Mar 2001 Instrument Overview28 Instrument Units and Subsystem Responsibilities

PACS IIDR 01/02 Mar 2001 Instrument Overview29 Observing Modes Observing modes are combinations of instrument modes and satellite pointing modes Instrument modes: –dual-band photometry –single-band photometry –line spectroscopy –range spectroscopy Pointing modes: –stare/raster/line scan –with/without nodding

PACS IIDR 01/02 Mar 2001 Instrument Overview30 Dual-Band Photometry Both arrays operating –full spatial sampling in each band –long-wave array imaging µm band –short-wave array imaging or µm band sub-band selected by filter Raw data rate ~ 1.6 Mbit/s (4 times oversampled) Standard mode for PACS as prime instrument, preferred mode for PACS/SPIRE parallel mode Observing parameters –chopper mode (off/on; waveform, throw) –pointing parameters (stare/raster/scan;nod) –integration time per pointing

PACS IIDR 01/02 Mar 2001 Instrument Overview31 Single-Band Photometry One array operating –long-wave array imaging µm band or –short-wave array imaging or µm band Raw data rate ~ 0.3 or 1.3 Mbit/s Test mode for PACS as prime instrument Fall-back mode for PACS/SPIRE parallel mode Observing parameters –chopper mode (off/on; waveform, throw) –pointing parameters (stare/raster/scan;nod) –integration time per pointing

PACS IIDR 01/02 Mar 2001 Instrument Overview32 Line Spectroscopy One or two arrays operating –observation of individual lines –long-wave array in µm band –short-wave array in or µm band –wavelength in primary band determines wavelength in secondary band Max. raw data rate 1 or 2 x ~1.8Mbit/s Observing parameters –scan width (default 0) –chopper mode (off/on; waveform, throw) –pointing parameters (stare/raster/scan;nod) –integration time per pointing

PACS IIDR 01/02 Mar 2001 Instrument Overview33 Range Spectroscopy Two arrays operating –observation of extended wavelength ranges continuous scan (full resolution) or steps (SED sampling) –long-wave array in µm band –short-wave array in or µm band Max. raw data rate 2 x ~1.8Mbit/s Observing parameters –start- and end wavelength –resolution mode –chopper mode (off/on; waveform, throw) –pointing parameters (stare/raster/scan;nod) –integration time per pointing

PACS IIDR 01/02 Mar 2001 Instrument Overview34 (a) Values for the photometry modes from or µm / µm, respectively. (b) The formal transmission of >1 takes into account the acceptance solid angle of the photoconductor light cones / bolometer baffles which differs from the beam solid angle. Parameters of PACS Instrument Model (Present Best Estimate)

PACS IIDR 01/02 Mar 2001 Instrument Overview35 Background, NEP, Spectroscopic and Photometric Sensitivity  Performance requirements (or even goals) met