Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

Slides:



Advertisements
Similar presentations
PLAnetary Transits and Oscillations of stars H. Rauer 1, C. Catala 2, D. Pollacco 3, S. Udry 4 and the PLATO Team 1: Institut für Planetenforschung, DLR.
Advertisements

1 A B Models and frequencies for frequencies for α Cen α Cen & Josefina Montalbán & Andrea Miglio Institut d’Astrophysique et de Géophysique de Liège Belgian.
Stellar analysis system (SAS*) WP370 T. Appourchaux Institut d’Astrophysique Spatiale, Orsay *SAS= Special Air Service or Son Altesse Sérénissime.
The Standard Solar Model and Its Evolution Marc Pinsonneault Ohio State University Collaborators: Larry Capuder Scott Gaudi.
1 The Sun as a whole: Rotation, Meridional circulation, and Convection Michael Thompson High Altitude Observatory, National Center for Atmospheric Research.
Hubble Science Briefing Hubble Does Double-Duty Science: Finding Planets and Characterizing Stellar Flares in an Old Stellar Population Rachel Osten Space.
The Group of Bootis Stars Dr. Ernst Paunzen Institute for Astronomy University of Vienna.
Solar-like Oscillations in Red Giant Stars Olga Moreira BAG.
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University.
A ground-based velocity campaign on Procyon Tim Bedding (Univ. Sydney) and about 50 others.
Travis Metcalfe (SSI) Magnetic Activity Cycles and the Solar-Stellar Connection.
SEARCHING FOR PLANETS IN THE HABITABLE ZONE. FROM COROT TO PLATO Ennio Poretti – INAF OAB.
Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
SOLUTION 1: ECLIPSING BINARIES IN OPEN CLUSTERS The study of eclipsing binaries in open clusters allows strong constraints to be placed on theoretical.
Somak Raychaudhury  Two-body problem  Binary stars  Visual  Eclipsing  Spectroscopic  How to find extrasolar planets.
Asteroseismology: Looking inside stars Jørgen Christensen-Dalsgaard & Hans Kjeldsen Aarhus Universitet Rømer.
ASTEROSEISMOLOGY CoRoT session, January 13, 2007 Jadwiga Daszyńska-Daszkiewicz Instytut Astronomiczny, Uniwersytet Wrocławski.
Inversion of rotation profile for solar-like stars Jérémie Lochard IAS 19/11/04.
Catania 09/08SIAMOIS1/26 Benoît Mosser, for the SIAMOIS team Ground-based Doppler asteroseismology after CoRoT and Kepler.
Marc Pinsonneault (OSU).  New Era in Astronomy  Seismology  Large Surveys  We can now measure things which have been assumed in stellar modeling 
Nonradial Oscillations. The Science Case:  Stellar Ages - directly for individual stars  Age determination is direct and reliable  Ages to stars which.
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
Question 1 Stellar parallax is used to measure the a) sizes of stars.
July Benoît Mosser Observatoire de Paris LESIA Mixed modes in red giants: a window on stellar evolution Stellar End Products Stellar End Products:
PLAnetary Transits and Oscillations of stars PLATO Consortium kick-off meeting.
1 CoRoT Highlights Annie Baglin and Eric Michel Observatoire de Paris and all the CoRoT Team and all the CoRoT Team * The Mission * Seismology * Stellar.
Katrien Uytterhoeven The Kepler space mission: New prospects for δ Sct, γ Dor, and hybrid stars Instituto de Astrofísica de Canarias, Tenerife NMSU, January.
Characterisation of stellar granulation and stellar activity (observational requirements, feasability, expectations) F. Baudin 1, R. Samadi 2, M-J Goupil.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
Future of asteroseismology II Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Dansk AsteroSeismologisk Center.
Scientific aspects of SONG Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
Asteroseismological determination of stellar rotation axes: Feasibility study (COROT AP+CP) L. Gizon(1), G. Vauclair(2), S. Solanki(1), S. Dreizler(3)
The study on Li abundances of solar-like stars Li Tanda Beijing Nomal University
Stellar Parameters through Analysis of the Kepler Oscillation Data Chen Jiang & Biwei Jiang Department of Astronomy Beijing Normal University 2 April 2010.
Excitation and damping of oscillation modes in red-giant stars Marc-Antoine Dupret, Université de Liège, Belgium Workshop Red giants as probes of the structure.
A Search for Earth-size Planets Borucki – Page 1 Roger Hunter (Ames Research Center) & Kepler Team March 26, 2010.
Class Goals Familiarity with basic terms and definitions Physical insight for conditions, parameters, phenomena in stellar atmospheres Appreciation of.
Chapter 11 Surveying the Stars Properties of Stars Our Goals for Learning How luminous are stars? How hot are stars? How massive are stars?
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
Travis Metcalfe (NCAR) Asteroseismology with the Kepler Mission We are the stars which sing, We sing with our light; We are the birds of fire, We fly over.
A tool to simulate COROT light-curves R. Samadi 1 & F. Baudin 2 1 : LESIA, Observatory of Paris/Meudon 2 : IAS, Orsay.
Travis Metcalfe Space Science Institute + Stellar Astrophysics Centre Asteroseismic Signatures of Magnetic Activity Variations in Solar-type Stars Collaborators:
1 Global Helioseismology 2: Results Rachel Howe, NSO.
Asteroseismology A brief Introduction
Jim Fuller Caltech/KITP ACOUSTIC OSCILLATIONS IN RED GIANTS.
Precision stellar physics from the ground Andrzej Pigulski University of Wrocław, Poland Special Session #13: High-precision tests of stellar physics from.
台灣清華大學, 物理系 Helioseismology (II) Global and Local Helioseismology ( , 北京 ) 周定一 Dean-Yi Chou.
The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means Valerie Van Grootel (1) G. Fontaine (2), P. Brassard (2),
Binary Orbits. Orbits Binary Stellar Systems 1/3 to 2/3 of stars in binary systems Rotate around center of mass (barycenter) Period - days to years for.
Constraints on the radial differential rotation of six Sun-like stars Martin Bo Nielsen Laurent Gizon, Hannah Schunker and Jesper Schou Institute for Astrophysics.
Asteroseismology and the Time Domain Revolution in Astronomy Marc Pinsonneault Ohio State University Collaborators: The APOKASC team Melissa Ness Marie.
Travis Metcalfe Space Science Institute + Stellar Astrophysics Centre Probing Stellar Activity with Kepler.
Oscillation spectra with regular patterns
1. Short Introduction 1.1 Overview of helioseismology results and prospects.
Flows and Cycles Large scale flows and stellar magnetic cycles Markus Roth Wiebke Herzberg René Kiefer Ariane Schad Guy Davis (UoB) Retreat of the Stellar.
PLAnetary Transits and Oscillations of stars Claude CATALA Observatoire de Paris, LESIA Main Science Requirements.
Sounding the cores of stars by gravity-mode asteroseismology Valerie Van Grootel (Institut d’Astrophysique, University of Liege, Belgium) Main collaborators.
Internal dynamics from asteroseismology for two sdB pulsators residing in close binary systems Valérie Van Grootel (Laboratoire d’Astrophysique de Toulouse.
Copyright © 2012 Pearson Education, Inc. Chapter 11 Surveying the Stars.
Takashi Sekii Division of Solar and Plasma Astrophysics and Hinode Science Center NAOJ Rotation of KIC
AFS Lecture 4. COROT, COnvection, ROtation & Transits exoplanétaires.
Rachel Howe.  Rotation profile  Rotation changes over the solar cycle  The torsional oscillation  Tachocline fluctuations  Frequency and parameter.
The Kepler Mission S. R. Kulkarni.
Asteroseismology of Kepler
Magnetic activity of F stars
Binary Orbits.
The SMARTS Southern HK Project
Presentation transcript:

Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay

Contents What is a solar-like star? A shopping list for physics The store: PLATO 2.0 Summary 2HELAS VI: Helioseismology and applications

What is meant by a solar-like star? 3HELAS VI: Helioseismology and applications Houdek et al (2000) Huber (2014) Huber et al (2011)

Shopping list for physics Internal rotation (Subgiant stars, MS star) Helium ionization and convection zones Excitation and damping (mode physics) Stellar cycle and activity Atmosphere: surface effect, asymmetries Stellar Radius, Mass and Age Clusters and Binary stars 4HELAS VI: Helioseismology and applications

Rotation in solar-like stars 5HELAS VI: Helioseismology and applications Nielsen et al (2014) Davies et al (2014) Seismically derived rotation provides light on differential rotation and gyrochronology (a few stars)

Rotation in evolved stars 6HELAS VI: Helioseismology and applications Deheuvels et al (2014) Subgiant stars having mixed modes provides the stellar rotation as a function of depth (6 stars) g-mode like p-mode like

Second differences: in depths... 7HELAS VI: Helioseismology and applications Mazumdar et al (2014) BCZ HeII Signatures and depths of the base of the convection and second Helium ionization zones (20 stars)

...leading to Helium abundance 8 HELAS VI: Helioseismology and applications Verma et al (2014) Amplitude of the signature of the second Helium ionization zone as a marker of helium abundance (1 star)

Mode physics: linewidth et al 9HELAS VI: Helioseismology and applications Appourchaux et al (2014) Different inferred background affects mode-physic parameters (and vice versa)

Stellar linewidths 10HELAS VI: Helioseismology and applications Appourchaux et al (2014) Linewidth depression at max decreases with effective temperature (23 stars)

Stellar activity 11HELAS VI: Helioseismology and applications Garcia et al (2010) Garcia et al (2013) Studies of stellar activity impact on seismic parameters to be done on more stars than just 2! Sun HD49933

Departure from Lorentzian mode profile (asymmetry) 12HELAS VI: Helioseismology and applications Toutain and Kosovichev (2005) Mode asymmetry yet to be detected in other stars than the Sun (impact on stellar modelling)

Surface effects 13HELAS VI: Helioseismology and applications Ball and Gizon (2014) Understanding and proper modelling of surface effect key for stellar modelling (8 stars)

Stellar mass and radius 14HELAS VI: Helioseismology and applications Huber et al (2012) White et al (2014) Lebreton and Goupil (2014) Calibration of scaling laws using interferometry From scaling laws to stellar modelling

Stellar age 15HELAS VI: Helioseismology and applications Lebreton and Goupil (2014) Metcalfe et al (2012) Age calibration possible on binary stars (3 binary stars) Age determination on single stars (>50 stars) No seismic proxy for stellar age (yet), model comparison required using frequencies and /or ratio

Binary stars 16HELAS VI: Helioseismology and applications Chaplin et al (2014) Seismic binary detection 0.5% for MS and subgiant stars to 1% for Red giants A "typical" seismic binary (Kepler) Appourchaux et al (2012) "Speckle-Interferometry" binary

Clusters 17HELAS VI: Helioseismology and applications Seismic scaling relation provides ways of identifying cluster members Stello et al (2011) Appourchaux et al (1993) Improved stellar age precision and other stellar parameters with cluster by a factor 3 (No cluster MS stars but...cluster RG stars)

Credits: G. Perez Diaz, IAC (MultiMedia Service) PLATO 2.0

PLATO 2.0 in short 19HELAS VI: Helioseismology and applications - Selected by ESA in February « Normal » 12cm cameras, cadence 25 s, white light - 2 « Fast » 12cm cameras, cadence 2.5 s, 2 colours - Dynamic range: 4 ≤ m V ≤ 16 - L2 orbit - Nominal mission duration: 6 years launched in long pointings of 2-3 years + step-and-stare phase (2-5 months per pointing)

PLATO 2.0 targets 20HELAS VI: Helioseismology and applications 4300 deg 2 (long stare fields) 20,000 deg 2 (plus step and stare fields) Noise Level (ppm/√hr) Number of cool stars mVmV 34 (Asteroseismology ) 22, , (Earth radius detection) 267, ,000,000 For the Baseline mission

Summary Stellar physics will face a revolution with PLATO 2.0 Stellar physics will improve in the following fields: – Stellar evolution – Internal structure and rotation (g modes?) – Convection zone, HeII zone – Stellar activity – Seismic inversion and diagnostics (left out here...) Stellar physics will be calibrated with: – Binary stars and clusters 21HELAS VI: Helioseismology and applications

PLATO 2.0 observing strategy 22HELAS VI: Helioseismology and applications Baseline observing strategy: 6 years nominal science operation 2 long pointings of 2-3 years + step-and-stare phase (2-5 months per pointing)