2001/9/20Laser Driven Target 1 Laser Driven Target at MIT Chris Crawford, Ben Clasie, Jason Seely, Dipangkar Dutta, Haiyan Gao Introduction Optical pumping Spincell optimization Components of the LDT Atomic Fraction Results Preliminary Polarization Future Work
2001/9/20Laser Driven Target 2 Atomic Beam Source Well established technology Can create pure spin states 8 x atoms/s 84% atomic fraction 80% polarization Laser Driven Target Compact design Active pumping—higher flux 2 x atoms/s 60% atomic fraction 50% polarization Overview
2001/9/20Laser Driven Target 3 Optical Pumping At spin temperature equilibrium, the population of each spin state n(m F ) is controlled by the Boltzmann equation.
2001/9/20Laser Driven Target 4 Spincell Optimization Developed a code to simulate recombination and depolarization One must minimize the Surface Area / Volume ratio, and the length of the transport tube Dimensions: 2” diameter spherical spincell with 5 cm neck
2001/9/20Laser Driven Target 5 Target Chamber
2001/9/20Laser Driven Target 6 Polarimeter
2001/9/20Laser Driven Target 7 Sextupole Magnet
2001/9/20Laser Driven Target 8 QMA Detector
2001/9/20Laser Driven Target 9 Dissociator Trials
2001/9/20Laser Driven Target 10 Atomic Fraction
2001/9/20Laser Driven Target 11 Preliminary Polarization Laser transmission QMA mass 1 signal polarization: 20% (+ helicity) and 23% (- helicity) polarization preserving mirrors only 87% efficient
2001/9/20Laser Driven Target 12 Future Work Redo polarization tests with correct mirrors. Fine-tune operational parameters. Investigate the quality of the spincell coating. Investigate performance of sextupole filter. Run tests with deuterium. Redesign target for operation at BLAST.