V. Pomjakushin I.M.Frank Laboratory of Neutron Physics, JINR, Dubna In collaboration with: A. Balagurov Frank Laboratory of Neutron Physics, JINR, Dubna.

Slides:



Advertisements
Similar presentations
Magnetismo y Superconductividad: Principios fundamentales, sistemas experimentales y líneas de investigación en el laboratorio de bajas temperaturas Luis.
Advertisements

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Neutron and X-ray Scattering Studies of Spin, Charge and Orbital Order in TM Oxides Andrew Boothroyd Department of Physics, Oxford University magnetization.
Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Inelastic Magnetic Neutron Scattering on the Spin-Singlet Spin- ½ FCC System Ba 2 YMoO 6 Jeremy P. Carlo Canadian Neutron Beam Centre, National Research.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Kitaoka lab Itohara Keita
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Perovskite-type transition metal oxide interfaces
1 Structural Studies of Metal-Hydrogen Interactions in Solid-State Metal Hydrides SINQ Users’ Meeting PSI, 27 Jan 2005 Yaroslav Filinchuk on behalf of.
Magnetism in 4d perovskite oxides Phillip Barton 05/28/10 MTRL 286G Final Presentation.
The Double Pervoskite NaTbMnWO 6 : A Likely Multiferroic Material † Alison Pawlicki, ‡ A. S. Sefat, ‡ David Mandrus † Florida State University, ‡ Oak Ridge.
Experimental Techniques Magnetization Specific heat Resistivity Low temperatures Small samples (~1 mg) High magnetic fields.
Effect of iron doping on electrical, electronic and magnetic properties of La 0.7 Sr 0.3 MnO 3 S. I. Patil Department of Physics, University of Pune March.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Prelude: Quantum phase transitions in correlated metals SC NFL.
Short range magnetic correlations in spinel Li(Mn Co ) 2 O 4.
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
Exchange Bias from Double Multilayer Structures C. H. Marrows, P. Steadman, M. Ali, A. T. Hindmarch, and B. J. Hickey Department of Physics and Astronomy,
1 The investigation of charge ordering in colossal magnetoresistance Shih-Jye Sun Department of Applied Physics National University of Kaohsiung 2005/9/30.
The attraction of  + to O 2- : using muons to study oxides Steve Blundell Clarendon Laboratory, Dept. Physics, University Of Oxford, UK.
Some features of Single Layered Manganites La 1-x Sr 1+x MnO 4 G. Allodi, C. Baumann, B. Büchner, D. Cattani, R. De Renzi, P. Reutler.
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Magnetism and Magnetic Materials
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Chemistry Solid State Chemistry Transition Metal Oxide Rock Salt and Rutile: Metal-Metal Bonding Chemistry 754 Solid State Chemistry Lecture 23 May.
Magnetism in Azurite Studied by Muon Spin Rotation (a status report) M. Kraken, S. Süllow and F.J. Litterst IPKM, TU Braunschweig A.U.B. Wolter, IFW Dresden.
On the spin orientation 1. Qualitative rules for predicting preferred spin orientations? 2. Spin orientations of Sr 3 NiIrO 6, Sr 2 IrO 4, Ba 2 NaOsO 6.
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Temperature-dependent orbital degree of freedom of a bilayer manganite by magnetic Compton scattering Yinwan Li ANL/ UI Chicago P. A. Montano UIChicago/US.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Coupling Single Molecule Magnets to Ferromagnetic Substrates.
An Introduction to Fe-based superconductors
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
C. Doubrovsky1, F. Bouquet1, C. Pasquier1, P. Senzier1
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Spin Polarized Inelastic Neutron Scattering NIST Summer School on Neutron Spectroscopy Seung-Hun Lee Peter Gehring Sungil Park Alina Visinoiu Gokhan Caliskan.
Magnetic properties and NMR data of Rb2MnCl4, RbMnCl3 Kang, Byeongki
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Spin Waves in Metallic Manganites Fernande Moussa, Martine Hennion, Gaël Biotteau (PhD), Pascale Kober-Lehouelleur (PhD) Dmitri Reznik, Hamid Moudden Laboratoire.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
Low-temperature properties of the t 2g 1 Mott insulators of the t 2g 1 Mott insulators Interatomic exchange-coupling constants by 2nd-order perturbation.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Orbital Ordering and Exchange Interactions in RMnO 3 Perovskites J. B. Goodenough, U.T. Austin DMR
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
Evolution of the orbital Peierls state with doping
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
SPECIAL ASPECTS OF STRUCTURE OF COMPLEX OXIDES OF IRON AND MANGANESE UNDER HIGH PRESSURE I would like to present you report about the crystal and magnetic.
Hyperfine interaction studies in Manganites
B4 Single crystal growth of tunable quantum spin systems
Anisotropic superconducting properties
NICPB, Tallinn, Estonia: R. Stern I. Heinmaa A. Kriisa E. Joon
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Exchange bias and magnetocaloric effect in LaCr0. 9Ru0
Crystal structure, electric and magnetic properties in NaxCoO2
Spin-orbit coupling and coupled charge-spin-orbital state in iridates
Presentation transcript:

V. Pomjakushin I.M.Frank Laboratory of Neutron Physics, JINR, Dubna In collaboration with: A. Balagurov Frank Laboratory of Neutron Physics, JINR, Dubna P. Fischer, D. Sheptyakov Laboratory for Neutron Scattering, ETH Zurich and PSI, Villigen D. Khomskii Solid State Physics Laboratory, Materials Science Centre, University of Groningen V. Yushankhai Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna A. Abakumov, E. Antipov, M. Lobanov, M. Rozova Chemistry Department, Moscow State University, Moscow Magnetic structure, disorder effects and unconventional superexchange interactions in A 2 MnGaO 5+  (A=Sr,Ca) layered oxides

SINQ user’s meting 2002, Bonn2 Why A 2 MnGaO 5+x (A=Sr, Ca)? Manganese oxides with possible CMR LaMn 3+ O 3 / SrMn 4+ O 3 La 2 Sr 1 Mn 3+ 2 O 7 / La 1 Sr 2 Mn 4+ 2 O 7 LaSrMn 3+ O 4 / Sr 2 Mn 4+ O 4 (AO) MnO 2 …(MnO 2 ) n –(AO) (AO) – (MnO 2 ) n … 3D Mn-O network

SINQ user’s meting 2002, Bonn3 Crystal structures of A 2 MnGaO 5+x (A=Sr, Ca) x=0, Mn 3+ Pnma, Ima2, Imcm P4/mmm, … x=0.5, Mn 4+ MnO 2 (AO) MnO 2 GaO 1+x 8Å8Å 4Å4Å Brownmillerite type of crystal structure There is space for extra oxygen in GaO 1+x -layers

SINQ user’s meting 2002, Bonn4 Neutron diffraction. Crystal structure HRPT/SINQ, =1.5 Å, Sr 2 MnGaO 5+x, T=10K x=0 Ima2 Imcm with disorder in GaO 4 tetrahedra x=0.5 P4/mmm with partially filled GaO 6 octahedra

SINQ user’s meting 2002, Bonn5 Neutron diffraction. Magnetic structure DMC/SINQ, =2.56 Å, T=2K G-structure h=2n+1 C-structure h=2n Short-range G-type G-type C-type

SINQ user’s meting 2002, Bonn6 Short range ordering effects G 40Å 5 layers 10 spins C C C Size effect peak broadening 40Å G-type short-ranged phase inside predominant C-type matrix Short-range G-type C-type Sr 2 MnGaO 5.5 Short-range G-type C-type

SINQ user’s meting 2002, Bonn7 Magnetic and crystal structures G-type GaO 4 Mn 3+ C-type GaO 6 Mn 4+ AFF Sr 2 MnGaO 5 Sr 2 MnGaO 5.5 AF

SINQ user’s meting 2002, Bonn8 Mn 3+ / Mn 4+ in octahedral site Mn 3+ t 2g xy, yz, zx Mn 4+

SINQ user’s meting 2002, Bonn9 AF in-plane superexchange (SE) Similar to CaMnO 3 Similar to RP phase (n=1) (SrCa)MnO 4 Mn 3+ O 2 plane 2.4Å 1.9Å Mn 3+ O 2- Mn 3+ Antiferromagnetic MnO 2 planes both for Mn 3+ and Mn 4+ in accord with standard SE. 180 o SE of half-filled both t 2g - t 2g and d z2 - d z2 orbitals is always AFM Mn 4+ O 2-  

SINQ user’s meting 2002, Bonn10 Interplane Mn-O-O-(O)-Mn superexchange Mn 3+ and GaO 4 AF Ga 180 o -AFM superexchange Vertical SE Mn A –Mn B weak FM weak AFM Diagonal SE Mn A –Mn C weak FM AFM Unconventional “diagonal” superexchange pxpx Mn 4+ and GaO 6 AF

SINQ user’s meting 2002, Bonn11 Mn-O-O-Mn diagonal 180 o superexchange 180 o -AFM superexchange 90 o weak FM superexchange p x, p z orbitals rotated by 45 o

SINQ user’s meting 2002, Bonn12 M eff accessed by neutron diffraction Effective magnetic moment effective occupancy real moment volume fraction Spin vacancy Spin flip  M/M=-2c

SINQ user’s meting 2002, Bonn13 Magnetic moments Magnetic moment seen by neutron diffraction is appreciably reduced -- local disorder, hybridization? Mn 3+ Mn 4+ Spin-only values Mn 3+ Mn 4+ DMC/SINQ

SINQ user’s meting 2002, Bonn14 Muon spin polarization P(t) below T N Local magnetic field distribution seen by  SR Coherent precession – long range ordering of Mn-spins Muon spin relaxation – disorder of Mn-spin configuration/value/direction ordered fraction

SINQ user’s meting 2002, Bonn15 2 types of disorder I. Disordered component of moment  SR frequency f ~ m 0 ND magnetic moment M ~ m 0 Local field B loc  SR frequency f~ m, while M ~ m(1-2c) II. Disorder of spin-configuration: Spin-flips with concentration c<<1 Disordered field from the flipped spin m f (r) -r, -m f r, m f

SINQ user’s meting 2002, Bonn16 Local magnetic disorder Ca 2 MnGaO 5.0 Sr 2 MnGaO 5.0 (G-type)  f Sr =f Ca, while  M/M  10%   (  /(2  f))  12% Spin flips (concentration<<1) can explain ND-  SR “contradiction” Sr 2 MnGaO 5.5 (C-type) Local spin fluctuations (spin-flips) Volume fraction decreased – second phase develops spatially separated Mn 3+ Mn 4+ Moment from neutron diffraction

SINQ user’s meting 2002, Bonn17 Summary  Novel manganese layered oxides A 2 MnGaO 5+  (A=Sr,Ca) with adjustable Mn 3+ /Mn 4+ -valence: synthesis and structure.  The principal structure difference between the  0 (Mn 3+ ) and  0.5 (Mn 4+ ) is GaO 1+  buffer layer, which is formed by tetrahedra or partially filled octahedra  AFM (  0) --> FM (  0.5) coupling between the AFM ordered MnO 2 - layers. Unconventional diagonal superexchange Mn 4+ -O-O-O-Mn 4+  Disorder effects in magnetic ordering - spin flops and short range phase separation. The magnetic disorder can be caused by the disorder in oxygen positions in GaO 1+  -layer.

SINQ user’s meting 2002, Bonn18 The end G-type GaO 4 Mn 3+ C-type GaO 6 Mn 4+ AFF Sr 2 MnGaO 5 Sr 2 MnGaO 5.5 AF

SINQ user’s meting 2002, Bonn19 Intermediate Mn-valence in Sr 2 MnGaO 5+ .  =0.13,  =0.41 GG + CC = 11 22

SINQ user’s meting 2002, Bonn20

SINQ user’s meting 2002, Bonn21 Configurational disorder Disordered component of moment B loc Disorder of spin-configuration: Spin-flips with concentration c<<1  SR frequency f ~ m 0 ND magnetic moment M ~ m 0 Local field f~ m, while M ~ m(1-2c) Disordered field from the flipped spin m f (r) -r, -m f r, m f

SINQ user’s meting 2002, Bonn22 Why A 2 MnGaO 5+x (A=Sr, Ca)?  Known Mn-oxides with intermediate Mn-valence 3+x possessing CMR effect are from Ruddlesden-Popper (RP) series (LaSr) n+1 Mn n O 3n+1 …(MnO 2 ) n –(AO) (AO) – (MnO 2 ) n …  La 1-x Sr x Mn 3+x O 3 – 3D Mn-O network (RP, n=  )  La 2-2x Sr 1+2x Mn 3+x 2 O 7 – 2D Mn-O network (RP, n=2)  A 2 MnGaO 5+x are novel manganese oxides with Mn 3+ /Mn 4+ —O network allowing double exchange. New doping possibility through incomplete oxygen sublattice. …MnO 2 –(AO)(GaO 1+x )(AO) – MnO 2 …

SINQ user’s meting 2002, Bonn23 Experiment Sample synthesis, X-ray at Inorg. Chem. Lab., MSU, Moscow Crystal and magnetic structures: powder neutron diffraction at HRPT and DMC, SINQ/PSI, Villigen Local disorder:  SR at PSI muon facilities

SINQ user’s meting 2002, Bonn24 M eff accessed by neutron diffraction Magnetic structure factor Effective magnetic moment effective occupancy real moment volume fraction Spin vacancy Spin flip  M/M=-2c