Network for Computational Nanotechnology (NCN) NanoElectronic Modeling with the NEMO toolkit on nanoHUB Jim Fonseca Network for Computational Nanotechnology.

Slides:



Advertisements
Similar presentations
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Success.
Advertisements

Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
Tutorial1: NEMO5 Technical Overview
1 Mark Lundstrom, Director Network for Computational Nanotechnology Discovery Park, Purdue University West Lafayette, IN Cyberinfrastructure for Discovery,
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First-Time User Guide BJT Lab V2.0.
Device Simulation: Transport (Double Gate MOSFETs) Mehdi Salmani Jelodar, Seung Hyun Park, Zhengping Jiang, Tillmann Kubis, Michael Povolotsky, Jim Fonseca,
Advanced Semiconductor Physics
Network for Computational Nanotechnology (NCN) Your Title Here Your Name Here Network for Computational Nanotechnology (NCN) Electrical and Computer Engineering.
Tutorial5: (real) Device Simulations – Quantum Dots Jean Michel D. Sellier Yuling Hsueh, Hesameddin Ilatikhameneh, Tillmann Kubis, Michael Povolotskyi,
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP NCN /
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Tutorial 6 – Device Simulation:
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First-time User Guide for Piecewise.
RCAC Research Computing Presents: DiaGird Overview Tuesday, September 24, 2013.
Gerhard Klimeck nanoHUB a fully operational science gateway and virtual organization Gerhard Klimeck, Michael McLennan Purdue University Network for Computational.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Atomistic.
Gerhard Klimeck Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois,
Gerhard Klimeck Applied Cluster Computing Technologies Group Quantum and semi-classical transport in RTDs using NEMO 1-D Gerhard Klimeck Jet Propulsion.
Large-Scale Density Functional Calculations James E. Raynolds, College of Nanoscale Science and Engineering Lenore R. Mullin, College of Computing and.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Tutorial 2. Input & output in NEMO5.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Tutorial 5 Strain Hesameddin Ilatikhameneh.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to OMEN Nanowire**
NCN 1 CI Days, Clemson University, May 20, 2008 Mark Lundstrom Network for Computational Nanotechnology Discovery Park, Purdue University.
Efficient solution algorithm of non-equilibrium Green’s functions in atomistic tight binding representation Yu He, Lang Zeng, Tillmann Kubis, Michael Povolotskyi,
9/14/ W1. Course name: Electrical materials Code: ELE163 Text references 1- Principles of Electronic Materials and Devices, 3 rd edition 2- Kittel,
HUBBUB 2013 September 5-6, 2013 The nanoHUB-U Initiative Mark Lundstrom and Supriyo Datta Network for Computational Nanotechnology Birck Nanotechnology.
Mark Lundstrom Birck Nanotechnology Center Network for Computational Nanotechnology Discovery Park, Purdue University West Lafayette, IN From nanoHUB to.
Overview of the HUBzero Platform
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP NEMO5.
Tutorial3: NEMO5 Models Jean Michel D. Sellier, Tillmann Kubis, Michael Povolotskyi, Jim Fonseca, Gerhard Klimeck Network for Computational Nanotechnology.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First-Time User Guide Drift-Diffusion.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Multi.
NanoHUB.org online simulations and more Network for Computational Nanotechnology Prof. Mark Lundstrom, Director Prof. Gerhard Klimeck, Technical Director.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Tight-Binding.
J.R.Krenn – Nanotechnology – CERN 2003 – Part 2 page 1 NANOTECHNOLOGY Part 2. Electronics The Semiconductor Roadmap Energy Quantization and Quantum Dots.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, UC Berkeley, Univ. of Illinois, UTEP CNTbands First-Time User Guide.
Text Book: Silicon VLSI Technology Fundamentals, Practice and Modeling Authors: J. D. Plummer, M. D. Deal, and P. B. Griffin Class: ECE 6466 “IC Engineering”
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Generation of Empirical Tight Binding.
Development of a Massively Parallel Nano-electronic Modeling Tool and its Application to Quantum Computing Devices Sunhee Lee Network for Computational.
HUBzero™ Cyberinfrastructure for Outreach, Dissemination, and Collaboration Michael McLennan Senior Research Scientist and Hub Software Architect Rosen.
Network for Computational Nanotechnology (NCN) SungGeun Kim Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois,
Modeling of nanotechnology: nano-electronics from quantum theory Modeling of nanotechnology: nano-electronics from quantum theory Prof. Hong Guo’s research.
Semiconductor Industry Milestones
1 Prof. Ming-Jer Chen Department of Electronics Engineering National Chiao-Tung University September 15, 2014 September 15, 2014 DEE4521 Semiconductor.
NanoHUB.org: Cyberinfrastructure for Research and Education Michael McLennan Software Architect Network for Computational Nanotechnology Purdue University.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to MOSCAP*
“NanoElectronics Modeling tool – NEMO5” Jean Michel D. Sellier Purdue University.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First time user guide for RTD-NEGF.
Network for Computational Nanotechnology (NCN) Gerhard Klimeck Berkeley, Univ. of Florida, Univ.of Illinois, Norfolk State, Northwestern, Purdue, Stanford,
IEE5328 Nanodevice Transport Theory and Computational Tools Prof. Ming-Jer Chen Dept. Electronics Engineering National Chiao-Tung University Feb. 20, 2013.
1 Prof. Ming-Jer Chen Department of Electronics Engineering National Chiao-Tung University 09/17/ /17/2012 DEE4521 Semiconductor Device Physics Lecture.
2 s 2.org 2008 MSD Annual Review Simulation study and tool development for ultra-scaled InAs HEMTs Theme 6 Neerav Kharche, Mathieu Luisier, & Gerhard.
NanoHUB.org online simulations and more Network for Computational Nanotechnology NCN nanoHUB experiences Scheduling and Managing Work and Jobs on OSG Open.
NanoHUB.org online simulations and more Network for Computational Nanotechnology Sebastien Goasguen, Middleware, Purdue Mark Lundstrom, Director, Purdue.
ELE 523E COMPUTATIONAL NANOELECTRONICS
Making sure you understand the material !!!
Electronic and Mechanical Materials Properties from DFT Calculations
Integrating Scientific Tools and Web Portals
ECE 695V: High-Speed Semiconductor Devices Peide (Peter) Ye Office: Birck Tel: Course website:
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Predicting TMD gated structure stark effect photoluminescence
Contact Resistance Modeling in HEMT Devices
Band Structure Lab with NEMO5 Yi Shen, Nicolás Esquivel Camacho, Michael Povolotskyi ,and Gerhard Klimeck Approach: The communication between Rappture.
OMEN: a Quantum Transport Modeling Tool for Nanoelectronic Devices
Atomistic simulations of contact physics Alejandro Strachan Materials Engineering PRISM, Fall 2007.
NEEDS Annual Review: May 8-9, 2017
Electronic devices based on nanostructures
ECE 695V: High-Speed Semiconductor Devices Peide (Peter) Ye Office: Birck Tel: Course website:
Multiscale Modeling and Simulation of Nanoengineering:
Bandgap modification due to strain
Presentation transcript:

Network for Computational Nanotechnology (NCN) NanoElectronic Modeling with the NEMO toolkit on nanoHUB Jim Fonseca Network for Computational Nanotechnology (NCN) Purdue University

2 Overview nanoHUB Nanoelectronics modeling NEMO5 engine NEMO-powered nanoHUB tools Best practices

3 nanoHUB.org 330,000 annual users 330 simulation tools »Nanoelectronics, nanophotonics, materials science, molecular electronics, carbon-based systems, Microelectromechanical systems 4,200 resources (video lectures, presentations, tutorials, etc.) nanoHUB-U (online courses) »Nanoscale transistors (Prof. Mark Lundstrom) »Fundamentals of Nanoelectronics (Prof. Supriyo Datta) »From Atoms to Materials: Predictive Theory and Simulations (Prof. Alejandro Strachan) »Principles of Electronic Nanobiosensors (Prof. Ashraf Alam)

4 $300 billion semiconductor industry International Technology Roadmap for Semiconductors (ITRS) Moore’s Law Countable number of atoms Quantum effects Devices (transistors) Smaller, faster, more energy efficient Designs, materials $300 billion semiconductor industry International Technology Roadmap for Semiconductors (ITRS) Moore’s Law Countable number of atoms Quantum effects Devices (transistors) Smaller, faster, more energy efficient Designs, materials Single atom transistorsTopological insulators Band-to-band tunneling Nanoelectronics Today Nature Nanotechnology 7, 242 (2012) Nature Physics 6, 584 (2010)IEEE Elec. Dev. Lett. 30, 602 (2009)

5 NEMO5 - Bridging the Scales From Ab-Initio to Realistic Devices Approach: Ab-initio: Bulk constituents Small ideal superlattices Map ab-initio to tight binding (binaries and superlattices) Current flow in ideal structures Study devices perturbed by: Large applied biases Disorder Phonons Ab-Initio Goal: Device performance with realistic extent, heterostructures, fields, etc. for new / unknown materials Problems: Need ab-initio to explore new material properties Ab-initio cannot model non- equilibrium. TCAD lacks real material physics TCAD

6 NEMO5 (on nanoHUB) NEMO5 »Academic and industrial use »Free for academic use »~30 developers currently »500,000 lines of code C++, python 3 rd party libraries »Input files 100s to 1000s of lines »3 ways to use NEMO5 Distribution and support group on nanoHUB –Source code available –nanoHUB workspace  Purdue’s RCAC clusters nanoHUB tools... solver { name = QTBM:bands_source_mode_contact type = Schroedinger iterator { set { active_regions = (1,2,3) allow_reinit_k_points = true automatic_threshold = true charge_model = electron_hole convergence_limit = 1.e-10 cutoff_distance_to_bandedge = 0.05 domain = source_mode_contact eigen_values_solver = krylovschur job_list = (assemble_H,passivate_H, calculate_band_structure) k_degeneracy = 1... } solver { name = QTBM:bands_drain_mode_contact type = Schroedinger...

7 NEMO5 on nanoHUB.org OMEN/NEMO5-based nanoHUB tools »Brillouin Zone Viewer Crystal theory »Crystal Viewer Visualize crystals, design your own »Bandstructure Lab Semiconductor fundamentals »1dhetero Poisson-Schroedinger Solver for 1 dimensional heterostructures »RTDNEGF – Calculate current through resonant tunneling diodes »Quantum Dot Lab Eigenstates (energy levels) of particle in a box system »nanoFET Calculate transport properties of transistors NEMO5 powered version of OMENwire, OMEN_FET »ITRS tool OMEN/PADRE/NEMO5 powered - (coming soon)

8 NEMO5 nanoHUB Usage Include one cool breakthrough image NEMO Powered Tools >18,000 Users >350,000 Simulation Runs >3,400 students in classroom

9 Bandstructure Lab ~100k Simulation Runs 6,000 Users Computes the electronic and phonon structure of various materials in the spatial configuration of bulk, quantum wells, and wires Various materials (Si, Ge, GaAs, etc. ) NEMO5 development -- Samik Mukherjee

10 Tool Development Timeline and Testing ~100 svn commits of Bandstructure Lab ~9200 commits of NEMO5 during development Jenkins » »Continuous integration and testing system »Alerts developers / owners Validity performance 12 bandstructure lab regression tests NEMO5OMENMATLAB ‘14‘13‘12‘11‘10‘09‘08‘07‘

11 Best Practices Multiple, noncurrent developers »Testing »activation Energy Development Guide and Resources »Linux »SVN »NEMO5 »nanoHUB »Rappture »Wrapper code Tcl, C »HPC systems

12 NEMO Agenda, Funding, and Leverage NSF-NEB NSF-OCI Tunneling Transistors GaN, MoS 2 Contacts, HEMTs Industrial Use Industrial Development Peta-Scale Computing Quantum Computing NSF- NCN 18,000 users IntelSamsung TSMCPhilips

13 iNEMO Group PI: Gerhard Klimeck 3 Research Faculty: Tillmann Kubis, Michael Povolotskyi, Rajib Rahman Research Scientist: Jim Fonseca 2 Postdocs: Bozidar Novakovic, Jun Huang Students: Kyle Aitken, Tarek Ameen, Yamini Bansal, James Charles, Chin-Yi Chen, Fan Chen, Yuanchu (Fabio) Chen, Rifat Ferdous, Jun Zhe Geng, Yu He, Yuling Hsueh, Jun Huang, Hesameddin Ilatikhameneh, Zhengping Jiang, Daniel Lemus, Pengyu Long, Daniel Mejia Padilla, Kai Miao, Samik Mukherjee, Ahmed kamal Reza, Santiago Rubiano, Harshad Sahasrabudhe, Mehdi Salmani Jelodar, Prasad Sarangapani, Saima Sharmin, Yaohua Tan, Yui Hong Tan, Archana Tankasala, Daniel Valencia Hoyos, KuangChung Wang, Yu Wang, Evan Wilson SURF Students: Josef Borga, Woody Gilbertson, Kevin Margatan, Vincent Ntarugera, Travis Shepherd, Zach Schaffter