Carrier mobility enhancement in strained silicon germanium channels SiNANO Workshop Carrier mobility enhancement in strained silicon germanium channels David Leadley University of Warwick
Collaborators Warwick IMEC SINANO partners KTH, Udine, Chalmers, AMO Tim Grasby, Andy Dobbie, Chris Beer, Jon Parsons, Evan Parker, Terry Whall IMEC Gareth Nicholas, Marc Meuris, M Heyns, P Zimmerman, Matty Caymax, ++ SINANO partners KTH, Udine, Chalmers, AMO
Why is mobility still critical ? High mobility - light mass and minimal scattering ITRS – long term years By 2020, Lg=5nm, Vdd=0.7V Mobility enhancement factor of 1.04 each node Ballistic enhancement factor x2 Double gate structures – light doping
Why add Ge? ADVANTAGES BUT… Smaller bandgap Lighter hole mass Strain – splits bands and reduces scattering BUT… Native oxide no good Band-to-band tunnelling
Pseudomorphic Si0.64Ge0.36 on Si Mobility doubled
Nicholas et al, Electronics Letters 41, 20052074 Impact Ionisation Reduced impact ionisation for SiGe, despite higher mobility Nicholas et al, Electronics Letters 41, 20052074
High-k gated SiGe Deposited HfO2 Si cap – oxidises to thin SiO2 interlayer Metal HfO2 SiO2 SiGe Si Lowest EOT 12Å < 1nm
Metal gate/HfO2 gate stack development for Si(cap)/Si0.8Ge0.2 channel Interface state density (W gate) Gate leakage Warwick, AMO, Chalmers
High-k/metal gated Si0.8Ge0.2 surface p-channel devices ........enhancements beating Intel (IEDM 2004) KTH, Warwick, Chalmers, AMO
KTH, Warwick, Chalmers, AMO Effective Mobility Best SiGe (25%) devices show mobility enhancement over silicon control Mobility degradation compared to universal – interface roughness and Coulomb scattering important KTH, Warwick, Chalmers, AMO
HOT SiGe Hybrid Orientation Technology n on (100), p on (110) in Si, Yang et al. IEDM 2003 in Si, no variation with orientation for long channels, but <110> best for short channels, Saito et al VLSI 2006 50% enhanced Idsat for SiGe (110) over Si (100), 3.3x for mobility, Liu et al VLSI 2006 (110) substrate [001] [110] (100) substrate [011]
Novel p-channel/substrate orientations = 3.2 nm … enhancement beating Liu et al (VLSI Symp 2006) KTH, Warwick, Chalmers, AMO
PMOS fabricated with Lg ~125 nm Unstrained Ge pMOS High performance Ge pMOS devices using a Si-compatible process flow Zimmerman et al. IEDM 2006 4nm HfO2 2μm Ge on Si substrate 12Å EOT, TDD 107-108 cm-2 PMOS fabricated with Lg ~125 nm IMEC
Unstrained Ge Ge + anneal Si IMEC
Uniformity restored after anneal Nit spread 0.2-8x1012cm-2 affects Ids, gm and Vt Uniformity restored after anneal IMEC
Thinner EOT? Starts to leak when too thin ! Si Starts to leak when too thin ! Mobility increase with thinner HfO2 less charge trapping Ragnarsson et al. IEEE TED 53, 1657 ( 2006) IMEC
Mobility in unstrained Ge μ > 300 cm2/Vs Correction required for Rsd in short channel devices Lg<0.25μm IMEC
Investigating trapped charge Dit varies across wafer 1011 - 2x1012cm-2 Warwick, IMEC
Interface charge density Extract Dit in 3 ways at 300K: from Vt – average all energies subthreshold slope – specific energy charge pumping Interface charge density Warwick, IMEC
Mobility modelling at 4K At low T, with confinement only have one HH subband. Fit using ni and D as parameters ... Warwick, IMEC
Modelled 4K mobility ni agrees with values from Dit Annealed As grown ni agrees with values from Dit Δ decreases after anneal from 0.6nm to 0.5nm, hence μSR increases by 35% μ300K must also depend on surface roughness Warwick, IMEC
Strain tuning buffers Strained-Si by local strain now in production Si1-yGey virtual substrates for global strain y~0.2 for s-Si y~0.5 for s-Si1-xGex y~0.8 for s-Ge Need low TDD and zero pile-up
Terrace Graded VS – better than industrial quality 20% Ge XTEM TDD ≤ 105cm-2, PUD=0 10x10um2 AFM image indicating RMS roughness 1.5nm Warwick, LETI, Jeulich
State-of-the-art sSi electron mobility from TG-VSs strain 0.6 – 1.1% State of the art F. Driussi et al., ULIS 2007 Warwick, Udine, KTH
sGe global platform - 80% terrace grade TDD=3x105/cm-2, PUD = 0, RMS ≈ 8nm Warwick, FZ-Jeulich, LETI
Novel thin VS for sGe Warwick Seed layer 300nm Si0.2Ge0.8 Grade Strained Ge Si Sub Strained Si 20x20 um2 AFM image. 1.3nm RMS, fully relaxed 80% platform TDD ≈ 106/cm2 range Warwick
Positive Vt due to gate workfunction Strained Ge pMOS 150nm TiN 4nm ALD HfO2 Positive Vt due to gate workfunction ASM, Warwick, IMEC
Record Ge mobility via CMOS process Peak μ = 650 cm2/Vs G. Nicholas et al., IEEE EDL 28, 825 (2007) Warwick, IMEC
Further comments on s-Ge Full band Monte Carlo calculations, incl. BTBT, SCE etc. show best prospect for pMOS … … strained-Ge directly on Si ! Krishnamohan et al (Stanford) VLSI (2006) For s-SiGe OI, Idsat enhancement in short channels exceeds μ increase in long channel. Tsutomu Tezuka et al. VLSI (2006) nMOS still a problem for Ge … … but tensile strain Si0.1Ge0.9 on relaxed Ge promising.
Summary Addition of Ge improves mobility High-k makes Ge viable Mobility enhancements relevant for nanometre scale devices
Terrace grading – new generation of virtual substrates TDD ≈ 4 x 104 cm-2 PUD = 0 30% Warwick
LG 30% ≈105 cm-2 TDD Pile-up ≈1 cm-1
High stability sSi layers Linear Grading Relaxation (%) Terrace Grading Strained Si thickness (nm) J. Parsons et al., ULIS 2007 Warwick, FZ-Jeulich
Extended Stacking Faults Defect etch image of 20nm strained silicon layer PVTEM image of 180nm strained silicon layer J. Parsons et al., ULIS 2007 Warwick, FZ-Jeulich
Extended Stacking Faults “Perfect” dislocation Stacking fault Trailing (30°) “partial” dislocation Leading (90°) “Partial” dislocation S-Si SiGe
Stacking faults – effective misfit dislocation blockers? Defect etch images of 30nm strained silicon layer J. Parsons et al., ULIS 2007 Warwick, FZ-Jeulich
50% terrace graded (for sSi) TDD = 2x105 cm-2 PUD = 0 Warwick
≈ 20% TG - slower growth (+sSi) TDD = 4 x 104/cm2 PUD = 0
Schottky Barrier MOSFET- world best? Tunnelling f(m*) Thermionic emmision Measurement Modelling D.J. Pearman et al., IEEE Trans ED (accepted 2006) UCL, Warwick, Glasgow