Massimo Della Valle Capodimonte Observatory, INAF-Napoli Icranet, Pescara Supernovae shed light on GRBs.

Slides:



Advertisements
Similar presentations
E. Pian – LNGS, 13 Sep 2005 Elena Pian - INAF, Trieste Astronomical Observatory, Italy LNGS Summer Institute 2005 GRB: Modern Status.
Advertisements

Insights from Radio Wavelengths into Supernova Progenitors Laura Chomiuk Jansky Fellow, Michigan State University.
The Physics of Supernovae
GRB PRODUCTION & SN SIGNATURES IN SLOWLY ROTATING COLLAPSARS. Diego Lopez-Camara Instituto de Astronomía (UNAM), Mexico City. In collaboration with William.
GRB : a canonical fake short burst L. Caito, M.G. Bernardini, C.L. Bianco, M.G. Dainotti, R. Guida, R. Ruffini. 3 rd Stueckelberg Workshop July 8–18,
Jets in GRBs Tsvi Piran Racah Institute of Physics, The Hebrew University Omer Bromberg, Ehud Nakar Re’em Sari, Franck Genet, Martin Obergaulinger, Eli.
The Story of Pulsational Pair-Instability SNe Briana Ingermann & Parke Loyd.
Gamma Ray Bursts S. R. Kulkarni California Institute of Technology.
Raffaella Margutti Harvard – Institute for Theory and Computation On behalf of the Harvard SN forensic team Kyoto2013 What happens when jets barely break.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
Supernovae from Massive Stars: light curves and spectral evolution Bruno Leibundgut ESO.
Supernovae and GRB Connection Ken’ichi Nomoto (Univ. of Tokyo) MAGNUM (U. Tokyo)
Detecting Neutrino Transients with optical Follow-up Observations Marek Kowalski Humboldt-University, Berlin TeV-III Venice, 2007.
Going out with a bang: HSTs continuing contribution to gamma-ray bursts Andrew Levan University of Warwick.
Spectral Energy Correlations in BATSE long GRB Guido Barbiellini and Francesco Longo University and INFN, Trieste In collaboration with A.Celotti and Z.Bosnjak.
Gamma-ray bursts Discovered in 1968 by Vela spy satellites
XRF associated with SN 2006aj Nature, Val 442 Aug.31 issues Campana et al. p.1008 Pian et al. P Soderberg et al. p.1014 Paolo et al. p.1018.
NASA's Chandra Sees Brightest Supernova Ever N. Smith et al. 2007, astro-ph/ v2.
A Radio Perspective on the GRB-SN Connection Alicia Soderberg May 25, 2005 – Zwicky Conference.
Gamma Ray Bursts: a new tool for astrophysics and cosmology? Guido Barbiellini University and INFN Trieste.
A burst of new ideas Nature Vol /28 December 2006 徐佩君 HEAR group meeting 12/
The Present and Future of GRB Cosmography Andrew S. Friedman (Harvard-CfA) & Joshua S. Bloom (Harvard-CfA / UC Berkeley)
Supernovae Historically: “new stars” in sky Seen in 1006, 1054, 1181, 1572, 1604, 1680 SN 1054 visible in daytime sky for many months (Chinese records)
The general theory of relativity is our most accurate description of gravitation Published by Einstein in 1915, this is a theory of gravity A massive object.
Observed properties of SN From Woosley Lecture 16 See also Filippenko (1997; ARAA 35, 309) See also
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
A Broader Perspective on the GRB-SN Connection Alicia M. Soderberg Caltech Schramm Symposium, Dec
COSMIC GAMMA-RAY BURSTS The Current Status Kevin Hurley UC Berkeley Space Sciences Laboratory.
Francisco J Virgili Prompt GRB Conference, 2011 March 5, 2011; Raleigh, NC.
「 Subaru UM 」 @ NAOJ, 30 Jan 2008 Supernovae are NOT spherical: The result from late-time spectroscopy by FOCAS “Asphericity in Supernova Explosions from.
Gamma-Ray Bursts and Supernovae Tsinghua Transient Workshop 8 Nov 2012 Elena Pian INAF-Trieste Astronomical Observatory, Italy & Scuola Normale Superiore.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
The Supernova Rate with WFXT M. Della Valle INAF-Napoli SN 1994D P. Rosati, M. Paolillo D. De Martino, S. Campana, L. Stella +
QSO -  QSO -  GRB ANALOGY HAVE THE SAME 3 BASIC INGREEDIENTS (M. & Luis Rodriguez, S&T 2002) AN UNIVERSAL MAGNETO-HYDRODINAMIC MECHANISM FOR JETS ?
Recent Observations of GRB-Supernovae Bethany Elisa Cobb The George Washington University IAU Symposium 279 March 13, 2012.
A Subclass of GRBs as Possible LIGO-2 Gravitational-Wave Sources Jay P. Norris NASA/GSFC (1) The prevalent belief structure: {Some, All?} GRBs associated.
1 SN-GRB Connection: Observations and Questions Massimo Della Valle INAF-Osservatorio Astrofisico di Arcetri, Firenze Bologna, 1 Giugno, 2006.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
SNLS-03D3bb Andy Howell University of Toronto and the Supernova Legacy Survey (SNLS)
Precise Cosmology from SNe Ia Wang Xiao-feng Physics Department and Tsinghua Center for Astrophysics, Tsinghua University 2005, 9, 22, Sino-French Dark.
Gamma-Ray Bursts Mano-a-Mano. Short bursts T
Different Kinds of “Novae” I. Super Novae Type Ia: No hydrogen, CO WD deflagration --> detonation Type Ia: No hydrogen, CO WD deflagration --> detonation.
BH Astrophys. Ch3.6. Outline 1. Some basic knowledge about GRBs 2. Long Gamma Ray Bursts (LGRBs) - Why so luminous? - What’s the geometry? - The life.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Ay 123 Lecture 11 - Supernovae & Neutron Stars Timescales for HS Burning faster and faster..
Measuring the cosmological parameters with Gamma-Ray Bursts Massimo Della Valle European Southern Observatory (ESO-Munchen) ICRANet (Pescara) INAF-Osservatorio.
Study on Gamma-Ray Burst host galaxies in the TMT era Tetsuya Hashimoto (NAOJ) 1.
Observational Properties and Modelling of Hypernovae Jinsong Deng National Astronomical Observatories of China Collaborators: P. A. Mazzali (Trieste Obs.
The nature of the longest gamma-ray bursts Andrew Levan University of Warwick.
GLAST GRB Science Group First GLAST Symposium, Stanford February 7, 2007 Elisabetta Bissaldi *, Francesco Longo ‡, Francesco Calura †, Francesca Matteucci.
Smartt, S. J. (2009). Progenitors of Core-Collapse Supernovae. doi: /annurev-astro
The GRB Luminosity Function in the light of Swift 2-year data by Ruben Salvaterra Università di Milano-Bicocca.
The Exceptional GRB/XRF and its Associated SN 2006aj Jinsong Deng National Astronomical Observatories of China.
Gamma-Ray Bursts. Short (sub-second to minutes) flashes of gamma- rays, for ~ 30 years not associated with any counterparts in other wavelength bands.
Study of the type IIP supernova 2008gz Roy et al. 2011, MNRAS accepted.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
IFU studies of GRBs and SNe regions Lise Christensen (Excellence Cluster Universe, Technical University Munich) + Maryam Modjaz (NY), + Christina Thoene.
1 Gravitational waves from short Gamma-Ray Bursts Dafne Guetta (Rome Obs.) In collaboration with Luigi Stella.
Classification of Gamma-Ray Bursts: an observational review Paolo D’Avanzo INAF – Osservatorio Astronomico di Brera.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Gamma-Ray Bursts Please press “1” to test your transmitter.
Single versus Binary Star Progenitors of Type IIb Supernovae
What made GRBs & ? Palli Jakobsson
“Dark” GRB in a Dusty Massive Galaxy at z ~ 2
Preliminary estimates
The most powerful explosions in the Universe
Ay 123: Supernovae contd...
GRB-Supernova observations: State of the art
Presentation transcript:

Massimo Della Valle Capodimonte Observatory, INAF-Napoli Icranet, Pescara Supernovae shed light on GRBs

Summary Supernova Taxonomy GRB-SN properties GRB and SN rates Progenitors Properties

Summary Supernova Taxonomy GRB-SN properties GRB and SN rates Progenitors Properties

Supernova taxonomy H I II IILIIPIIn brightfaint very bright Si Ia He Ib Ic thermonuclear < 8M  IIb core-collapse > 8M   High KE SNe-Ic  Hypernovae  GRB-SNe

Properties of GRB-SNe (broad-lined SNe-Ic) Lack of H and He in the ejecta: SNe-Ic Very broad features: large expansion velocity (0.1c) High luminosity: large 56 Ni mass ( ~ 0.5±0.2 M  ) Energy (non-relativistic ejecta) ~ erg ≳ 10 larger than usual CC-SNe Explosions are aspherical (profiles of nebular lines O vs. Fe and Polarization)

Ingredients for a “healthy” SN and GRB rates

Cooking GRB and SN rates

Main Courses Rate of SNe-Ibc

Main Courses Rate of SNe-Ibc Fraction of SNe-Ib/c which produces (long)GRBs

Main Courses Rate of SNe-Ibc Fraction of SNe-Ib/c which produces (long)GRBs HL-GRB vs LL-GRB rates

Main Courses Rate of SNe-Ibc Fraction of SNe-Ib/c which produces (long)GRBs HL-GRB vs LL-GRB rates GRB vs. HN rates

Main Courses Rate of SNe-Ibc Fraction of SNe-Ib/c which produces (long)GRBs HL-GRB vs LL-GRB rates GRB vs. HN rates “silent” GRB vs GRB rates

13 What is the rate of SNe-Ib/c ? Asiago Survey (Cappellaro et al. 1999) Rate for Ib/c: ± S Nu Guetta & DV x 10 4 SNe-Ibc Gpc -3 yr -1  1.1x 10 4 up to 2.6x 10 4

14 Rate for Ib/c: 2.6 x 10 4 SNe-Ibc Gpc -3 yr x 10 4  3 x 10 4 SNe-Ibc Gpc -3 yr -1 What is the rate of SNe-Ib/c ? Lick Survey (Li et al. 2011)

15 2.4±0.2 x 10 4 SNe-Ibc Gpc -3 yr -1 What is the rate of SNe-Ib/c ?

16 GRB Gpc -3 yr Schmidt Schmidt Guetta et al Guetta & DV Liang et al > 0.5 Pelangeon et al Wanderman and Piran 2010 (Guetta, Piran & Waxman 2005) What is the local rate of (long) GRBs ? Guetta et al. 2011

GRB Gpc -3 yr -1 ( ) What is the local rate of (long) GRBs ?

18 Rate for Ibc: 2.4 x 10 4 SNe-Ibc Gpc -3 yr -1 GRB rate: 0.7 GRB Gpc -3 yr -1 What is the fraction of SNe-Ib/c which produces (long)GRBs ?

19 Rate for Ibc: 2.4 x 10 4 SNe-Ibc Gpc -3 yr -1 GRB rate: 0.7 GRB Gpc -3 yr -1 ~500 (Frail et al. 2001) ( ϑ ~ 4°) ~75 (Guetta, Piran & Waxman 2004) ( ϑ ~ 9°) 25°) for sub-lum GRBs ~ 1 (Ruffini et al. 2006) ( ϑ ~ 4 π) What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Racusin et al GRB B

In some cases there is not evidence for beaming, i.e. an achromatic break was not detected (see Campana et al. 2007). LL-GRBs ~ 1-2 GRB  >80 o (Soderberg et al. 2006) 30 o (Malesani 2006) 25 o (Guetta & Della Valle 2007)

22 Rate for Ibc: 2.4 x 10 4 SNe-Ibc Gpc -3 yr -1 GRB rate: 0.7 GRB Gpc -3 yr -1 ~500 (Frail et al. 2001) ( ϑ ~ 4°) ~75 (Guetta, Piran & Waxman 2004) ( ϑ ~ 9°) 25°) for sub-lum GRBs ~ 1 (Ruffini et al. 2006) ( ϑ ~ 4 π) What is the fraction of SNe-Ib/c which produces (long)GRBs ? GRB/SNe-Ibc: 1.5%-0.003%

GRB/SNe-Ibc ~ 1/146 GRB/SNe-Ibc ~ 0.7% GRB/SNe-Ibc: 1.5%-0.003% < 5% at 99%

Grieco, Matteucci GRB/SNeIbc  % Wandeman & Piran 2009 Matsubayashi et al (10° < ϑ < 40°)

(2013) 1° < ϑ < 30°

26 Rate for Ibc: 2.4 x 10 4 SNe-Ibc Gpc -3 yr -1 GRB rate: 0.7 GRB Gpc -3 yr -1 ~500 (Frail et al. 2001) ( ϑ ~ 4°) ~75 (Guetta, Piran & Waxman 2004) ( ϑ ~ 9°) 25°) for sub-lum GRBs ~ 1 (Ruffini et al. 2006) ( ϑ ~ 4 π) What is the fraction of SNe-Ib/c which produces (long)GRBs ?

Local GRB-SN census GRB SN zRef. GRB SN 1998bw Galama et al GRB SN 2006aj0.033 Campana et al Pian et al. 2006

LL-GRBs HL-GRBs Fermi Swif t Sampled volume 10 6 smaller  Rate LL-GRBs: up to x 10 3 Gpc -3 yr -1 (Della Valle 2005, Pian et al. 2006, Cobb et al. 2006, Soderberg et al. 2006, Liang et al. 2006, Guetta & Della Valle 2007, Amati et al. 2007)

29 LL-GRBs GRB SN zD max Sky Cov.Δt (yr) GRB SN 1998bw Mpc0.087 GRB SN 2006aj Mpc0.179 GRB SN 2008D Mpc0.179 GRB D SN 2010bh Mpc0.179

30 LL-GRBs Rate LL-GRBs counts (beppo-Sax) ~ 0.2 – 3.3 (1 σ ) (Gehrels 1986) SkyCov +V max + Δ t  “observed” ~ 90 Gpc -3 yr -1 (18 up to 300)

31 LL-GRBs Rate LL-GRBs counts (beppo-Sax) ~ 0.2 – 3.3 (1 σ ) (Gehrels 1986) SkyCov +V max + Δ t  “observed” ~ 90 Gpc -3 yr -1 (18 up to 300) LL-GRBs counts (Swift) ~ 1.3 – 6 (1 σ )  SkyCov + V max + Δ t  “observed” ~ 65 Gpc -3 yr -1 (48 up to 111)

32 LL-GRBs Rate LL-GRBs counts (beppo-Sax) ~ 0.2 – 3.3 (1 σ ) (Gehrels 1986) SkyCov +V max + Δ t  “observed” ~ 90 Gpc -3 yr -1 (18 up to 300) LL-GRBs counts (Swift) ~ 1.3 – 6 (1 σ )  SkyCov + V max + Δ t  “observed” ~ 65 Gpc -3 yr -1 (48 up to 111) LL-GRBs “observed” ~ 71 GRBs Gpc -3 yr -1 (51 up to 104)

33 LL-GRBs Rate LL-GRBs counts (beppo-Sax) ~ 0.2 – 3.3 (1 σ ) (Gehrels 1986) SkyCov +V max + Δ t  “observed” ~ 90 Gpc -3 yr -1 (18 up to 300) LL-GRBs counts (Swift) ~ 1.3 – 6 (1 σ )  SkyCov + V max + Δ t  “observed” ~ 65 Gpc -3 yr -1 (48 up to 111) LL-GRBs “observed” ~ 71 GRBs Gpc -3 yr -1 (51 up to 104) LL-GRBs ~ 1-2 GRB  >80 o (Soderberg et al. 2006) 30 o (Malesani 2006) 25 o (Guetta & Della Valle 2007)

34 LL-GRBs Rate LL-GRBs ~ 71 x (1 ÷ 10) ~ 70 ÷ 700 LL-GRBs Gpc -3 yr -1 HL-GRBs ~75 (Guetta, Piran & Waxman 2004) ϑ ~ 9° HL-GRBs ~ 0.7 x 75 ~ 50 Gpc -3 yr -1 LL-GRB/HL-GRB ~ 1.4 ÷ 14

35 What is the fraction of SNe-Ib/c which produces HNe?

JANFEBMARAPRMAYJUNJULAGOSEPDECNOV observing log 1.The observing log: epoch, limiting magnitude 2.Target apparent light curve: SN type, target distance 3.Galaxy sample: distance, type, inclination ……. How to compute rates

SN light curve in B absolute magnitude galaxy distance modulus B to V K-correction galactic extinction t 0 = t /(1+z) detection efficiency galaxy luminosity time SN stays at m-m+dm

SNe-Ib=81 SNe-Ic=132 SNe-Ibc=50 HNe=18 HL-GRBs/HNe: 5%-0.04% HNe/SNe-Ibc: ~ 7%

-highly collimated component 4°-10° for HL-GRBs containing a tiny fraction of the mass (10 -4/-5 M  ) moving at ~ x line of sight HN + GRB line of sight HN 30,000 km/s A simplified Scheme for a GRB-SN event -an almost isotropic component carrying most energy erg and mass (~5- 10M  ) HL-GRBs/HNe: 5%-0.04%

SNe-Ib=81 SNe-Ic=132 SNe-Ibc=50 HNe=18 LL-GRBs/HNe: 40%-5%

Gehrels et al Mangano et al Low redshift: z = SN search? 0s 50s 100s Messing up matters: GRB

Late time: host galaxy contribution (no variation) Upper limit: M V > (3  ) Della Valle et al (see also Gal-Yam et al – Fynbo et al ) What is the rate of GRB like events ? Factor >100

1. Supranova  SN occurs (months, years) before the GRB (Vietri & Stella 1998) 1. Supranova  SN occurs (months, years) before the GRB (Vietri & Stella 1998) 2. NS  QS (Berezhiani et al. 2003) 2. NS  QS (Berezhiani et al. 2003) 3. Vacuum Polarization around Kerr-BH (Ruffini 1998; Caito et al. 2008) 3. Vacuum Polarization around Kerr-BH (Ruffini 1998; Caito et al. 2008) Binary merging mechanisms similar to those proposed to power short GRBs (Gehrels et al. 2006) Scenarios without Supernova

Scenarios with Supernova -13.5

Pastorello et al. 2007

SN 2008ha is the first faint, hydrogen deficient, low-energy core-collapse supernovae ever detected. Potential “dark SN” (GRB progenitor) ?

GRB-SN census (z > 0.1) GRB SN zRef. GRB SN 2002lt1.002 Della Valle et al GRB ASN 2005nc0.606 Della Valle et al GRB BSN 2010ma0.55 Sparre et al GRB SN0.54 Cano et al GRB SN0.54 Cano et al GRB SN 2008hw0.53 Della Valle et al GRB SN 2009nz0.49 Cobb et al Berger et al GRB120714BSN 2012eb0.4 Klose et al GRB ASN 2012bz0.28 Melandri et al GRB SN 2003dh0.16 Hjorth et al Stanek et al GRB SN 2003lw0.11 Malesani et al A (Melendri et al A (D’Elia et al. 2014)

48 What is the local rate of like events ? 0.7 GRB Gpc -3 yr -1 ( ) GRB-SN counts+SkyCov +V max + Δ t  “observed” ~ 0.4 Gpc -3 yr -1 ( ) like ~ 0.3 GRB Gpc -3 yr -1 “observed” ( & ) ~ GRB Gpc -3 yr -1

Conclusions GRB rates vs. SN rates give: GRB/SNe-Ibc: 1.5%-0.003% Consistent with the results of Radio surveys: GRBs/SNeIbc <5% Observations  4° < ϑ < 4 π Observations + theory  ϑ < 40° LL-GRB (<10 50 erg) / HL-GRB (~10 52÷54 erg ) ~ 1.4 ÷ 14

Conclusions (cont’d) HL GRBs/HNe: 5%-0.04% Most HNe are not able to produce HL-GRBs GRB A

 Testing the GRB-SN paradigm with the brightest “close” event; GRB A T90=162s  Recent detection of the very energetic (Eiso = erg) “neraby” (z = 0.34) GRB030427A  Unique occasion to test the GRB-SN connection for “cosmological” GRBs Melandri et al. 2014

Conclusions (cont’d) HL GRBs/HNe: 5%-0.04% LL GRBs/HNe: 40%-4% Most HNe are not able to produce HL-GRBs This ratio may increase dramatically, up to an order of magnitude for LL-GRBs However it still appears that while most GRBs are connected with HNe, the viceversa is not true. GRB A GRB SN 2002ap

Conclusions (cont’d) observed GRB rate = 0.7 GRB Gpc -3 yr -1 ( ) observed GRB-SN rate = 0.4 GRB-SNe Gpc -3 yr -1 ( ) The comparison between the GRB rate and the GRB-SN rate suggests that like events represent a fraction < 40% or << 40% GRB Gpc -3 yr -1 of the long GRBs population.

Conclusions (cont’d) GRBs are very rare phenomena (compared to SN explosions) GRB/SNe-Ibc: 0.003%-1.5% Ibc/CC ~ 0.30 GRB/CC-SN ~ ÷ 5 x 10 -3

Conclusions (cont’d) GRBs are very rare phenomena (compared to SN explosions) GRB/SNe-Ibc: 0.003%-1.5% Ibc/CC ~ 0.30 GRB/CC-SN ~ ÷ 5 x What causes some small fraction of CC-SNe to produce observable GRBs, while the majority do not?

Special conditions are requested to stars to be GRB progenitors: i) to be massive ~ M  (Maeda et al. 2006; Raskin et al. 2008; Tanaka et al. 2008) ii) H/He envelopes to be lost before the collapse of the core, i.e. the GRB progenitor is a WR star (Campana et al. 2006) iii) low metallicity and star forming environments (Modjaz et al. 2008, Fruchter et al. 2006) i v) binarity (Panagia 1988 and Smartt et al  a significant fraction of SNe-Ibc progenitors are binaries) v) high rotation (Yoon et Langer 2005; Campana et al. 2008, Yoon et al. 2012) vi) pair instability mechanisms ? (Gal-Yam 2012; Chardonnet et al. 2010)

130427A GRB/HNe ~ 40% Rate x 10 Rate x 1 GRB/HNe ~ 5% LL-GRBsHL-GRBs HN energy (non-relativistic ejecta) ~ erg 10 52/

130427A 10 52/ d

62 Why SN and GRB rates? Metal Enrichment (Nomoto 2012; Kobayashi 2007) Energy Injection (von Glasow et al. 2013; Lowenstein 2001) Cosmic Rays (Blasi 2013; Chakraborti et al. 2011; Ioka & Meszaros 2010) Neutrinos (Razzaque, Mészáros & Waxman 2004; Fryer & Mészáros 2003) GWs (van Putten et al. 2011; Birnholtz & Piran 2013) Reionization (Meiksin & Whalen 2013, Wyithe et al. 2010) GRB/SN rate vs. redshift (Grieco et al. 2012, Salvaterra 2012, Wanderman & Piran 2010)

Special conditions are requested to stars to be GRB progenitors:

GRB-SN census (z > 0.1) GRB SN zRef. GRB SN 2002lt1.002 Della Valle et al GRB ASN 2005nc0.606 Della Valle et al GRB BSN 2010ma0.55 Sparre et al GRB SN0.54 Cano et al GRB SN0.54 Cano et al GRB SN 2008hw0.53 Della Valle et al GRB SN 2009nz0.49 Cobb et al Berger et al GRB120714BSN 2012eb0.4 Klose et al GRB ASN 2012bz0.28 Melandri et al GRB SN 2003dh0.16 Hjorth et al Stanek et al GRB SN 2003lw0.11 Malesani et al. 2004

line of sight HN + GRB line of sight HN 30,000 km/s A simplified Scheme for a GRB-SN event an almost isotropic component carrying most energy erg and mass (~5-10M  )  SN event -almost isotropic, mildly relativistic component θ > 20° LL-GRBs/HNe: 40%-4%

Supernova taxonomy H I II IILIIPIIn brightfaint very bright Si Ia He Ib Ic thermonuclear < 8M  IIb core-collapse > 8M   High KE SNe-Ibc  Hypernovae  GRB-SNe

We find that some of the hyper-energetic events cannot be powered by the spindown of rapidly rotating proto-neutron stars by virtue of their limited rotational energy. They can, instead, be produced by the spindown of black holes (  70’s Bisnovatyi-Kogan).

In some cases there is not evidence for beaming, i.e. an achromatic break was not detected (see Campana et al. 2007). It is difficult to figure out a mechanism in which a SN event (E K < erg) can originate a HL-GRB, which may be (in some cases) energetically dominant. 2011

69 Madau, Della Valle & Panagia 1998 ¯ ¯ Hold in check what we are doing…… Woosley & mm SNe per sec  3.3 SNe per sec

What fraction of CC-SNe give rise to Gamma-Ray Bursts ?

71 What is the rate of SNe-Ib/c ? Asiago Survey: Cappellaro et al. 1999

Fruchter et al. 2006

SN surveys + LF GRBs Radio SN surveys Relativistic SN Theory 1 Theory 2 GRBs/SNeIbc < 1.5% = 0.01% ÷ 0.25% or ÷ 2.5x10 -3

High Luminosity GRBs vs Low Luminosity GRBs LL-GRBs HL- GRBs Fermi Swift

75 LL-GRBs GRB SN zD max Sky Cov.Δt (yr) GRB SN 1998bw Mpc0.087 GRB SN 2006aj Mpc0.179

1998bw 40 M  2003dh M  2003lw M  2006aj ~25 M  2008D M  Maeda et al Mazzali et al Mazzali et al Tanaka et al Modeling lightcurves and spectra M  / M  ~ 0.14 GRB/CC-SN ~ ÷ 5 x 10 -3

GRB : SN with small explosion energy  low expansion velocity  most 56 Ni falls back into the BH  small 56 Ni mass in the ejecta  < 10 -4/-5 M  56 Ni  “Dark Supernovae” (see DV et al. 2006, Nomoto et al and Tominaga et al. 2007) Nomoto et al See also Smartt et al Zampieri et al. 2003

GRB/SNeIbc  0.4%-0.01% Ghirlanda et al (6° < ϑ < 45°)