1 T. CharpentierActinet Workshop, September 23th, 2005 A Solid State NMR Study of a Mixed Alkali Aluminoborosilicate Glass Structure and its Evolution.

Slides:



Advertisements
Similar presentations
Relaxation Time Phenomenon & Application
Advertisements

Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Molecular Orbitals An approach to bonding in which orbitals encompass the entire molecule, rather than being localized between atoms.
Measuring concentration using electrodes Indicator electrodes used with reference electrode to measure potential of unknown solution E cell = E indicator.
Chapter 7 Summary  Here’s what you need to know Trends for and explanations of:  Electron Shells and Sizes of Atoms  Electronegativity  Ionization.
DIAMOND Decommissioning, Immobilisation and Management of Nuclear Wastes for Disposal Effects of Zinc Addition on the Structure of Sodium Silicate Glass.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
DIAMOND Decommissioning, Immobilisation and Management of Nuclear Wastes for Disposal Density Functional Theory study of defects in zirconolite Jack Mulroue.
核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and Imaging Lecture 08 Introduction to Solid State NMR (Spring Term, 2011) Department of Chemistry National.
Institut des NanoSciences de Paris CNRS et Universités de Paris 6 et 7 Isotopes and ion beams in the study of dielectric/semiconductor interfaces. Ian.
Towards a Clearer Picture of Complex Borosilicates NMR of Borate Model Glasses Scott Kroeker Department of Chemistry, University of Manitoba Solid-State.
Physics 440 Condensed Matter Physics a.k.a. Materials Physics Solid-State Physics.
1 Lecture 12 The cooperative relaxation of water at the pore surface of silica glasses.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Dieter Freude, Institut für Experimentelle Physik I der Universität Leipzig METU-Center Workshop on Solid State NMR, 1 November 2007 Solid-state NMR studies.
Extensions of the Stochastic Model of the Overdamped Oscillator Applied to AC Ionic Conductivity in Solids Juan Bisquert Departament de Ciències Experimentals.
ELECTRICAL PROPERTIES OF GLASSES INORGANIC GLASSES CONDUCTIVITY NATURE AND APPLICATIONS Pure ionic conductivity : Pure electronic conductivity : - demonstrated.
March 2, 2010Global Network Symposium 1 Physics of compression of liquids Implication for the evolution of planets Shun-ichiro Karato Yale University Department.
Carbon Dioxide Clusters and Copper Complexes Formed in Argon Matrices Michael E. Goodrich & David T. Moore Chemistry Department, Lehigh University Bethlehem.
1 DIELECTRIC RELAXATION IN POROUS MATERIALS Yuri Feldman Tutorial lecture 5 in Kazan Federal University.
Muon Spectroscopy Koji Yokoyama School of Physics and Astronomy, QMUL (on behalf of Dr. Alan Drew) MRI Spectroscopy Workshop 29 th May, 2014.
J.Vaitkus et al., WOEDAN Workshop, Vilnius, The steady and transient photoconductivity, and related phenomena in the neutron irradiated Si.
T, K NBO BO4 Pressure effects on borosilicate glass structure Jonathan F. Stebbins, Stanford University, DMR
24 th ICNTS, Bologna, 1-5 September 2008 Radiation Induced Damage Electron, Gamma Photon and Ion Irradiation Effects in PP/EPR/HDPE Christelle Bergeon.
Organizing the Elements.  How do you organize a collection of different things?  Elements are organized into groups based upon their chemical properties.
Naoki Komatsu 1, Marc Dubois 2, Katia Guérin 2, André Hamwi 2, Jérôme Giraudet 3, Françis Masin 3 1 Shiga University of Medical Science (SUMS), Department.
The influence of the internal displacement cascades structure on the growth of point defect clusters in radiation environment C.S. Becquart 1, C. Domain.
I MMOBILIZATION OF RADIOACTIVE IODINE IN PHOSPHATE GLASS T. Lemesle 1,2, F.O. Méar 1, L. Campayo 2, O. Pinet 2, L. Montagne 1 1 Unité de Catalyse et Chimie.
Modification of Si nanocrystallites in SiO2 matrix
1 Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) Applying Atomic Structure Knowledge to Chemical Analysis.
Borosilicate Glass Structure Jonathan F. Stebbins, Stanford University, DMR Professor Stebbins of Stanford University shows the effect of composition.
Passive detectors (nuclear track detectors) – part 2: Applications for neutrons This research project has been supported by the Marie Curie Initial Training.
INTERSTITIAL DEFECT REACTIONS IN P-TYPE SILICON IRRADIATED AT DIFFERENT TEMPERATURES L.F. Makarenko*, S.B. Lastovski**, L.I. Murin**, M. Moll*** * Belarusian.
Periodic Properties of the Elements Chapter 7. Effective Nuclear Charge Orbitals of the same energy are said to be degenerate. Effective nuclear charge.
Periodic Table Trends: Atomic Radius & Ionization Energy pg
1 Russian Research Center” Kurchatov Institute” Alexander Ryazanov Charge State Effects of Radiation Damage on Microstructure Evolution in Dielectric Materials.
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
First Principle Calculation of Nuclear Magnetic Resonance (NMR) chemical shift Kanchan Sonkar Center of Biomedical Magnetic Resonance SGPGIMS-Campus, Lucknow,
Ionic Bonds form when the difference in electronegativities between atoms trying to share electrons is so great, the electron pair is “stolen” by the.
J.Vaitkus, L.Makarenko et all. RD50, CERN, 2012 The free carrier transport properties in proton and neutron irradiated Si(Ge) (and comparison with Si)
Recap – Last Lecture Periodic Trends in ionisation energy, atomic radius and electronegativity result from the influence of effective nuclear charge. 1.
ROMA, September 2015 Giovanna Ruello Glass Systems Nanovoids Relaxations &
Overview of Tandem Accelerator Facility and related R&D Work at NCP Ishaq Ahmad
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
MIT Amorphous Materials 2: Classes of Amorphous Materials Juejun (JJ) Hu 1.
Trends on the Periodic Table
Role of Electronic and Nuclear Losses in Glass Network Modification
J. G. Shah1, A. Ananthanarayanan1, B. K. Pannigrahi2, C. David2,
Oxidation-Reduction Reactions
Periodicity.
First Investigation of Lithium Drifted Si Detectors
The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization
Bonds Ionic – Bond formed due to a difference in charge
New High Zirconia fused cast material for high quality glass without low temperature oxygen blistering ICF Technical meeting, Sienna November 05th , 2007.
Periodicity Chapters 6 and 10
Is lead part of the glass network in lead glasses
Australian Nuclear Science and Technology Organisation, Australia
Hyperfine interaction studies in Manganites
[
of interfaces in glass/crystal composites for nuclear wasteforms
Radiation damage in Trombay nuclear waste glasses
MIT Amorphous Materials 2: Classes of Amorphous Materials
Chapter 8 The Periodic Table: Structure and Trends
Chapter 7 Periodic Properties of the Elements
Nuclear Magnetic Resonance (NMR)
Asst. Lect. Shireen Hasan
Computational Materials Science Group
Trends in Melting Point
Oxidation-Reduction Reactions
Presentation transcript:

1 T. CharpentierActinet Workshop, September 23th, 2005 A Solid State NMR Study of a Mixed Alkali Aluminoborosilicate Glass Structure and its Evolution Under  Irradiation T. Charpentier, M. Gaillard, D. Sakellariou, J. Virlet Laboratoire de Structure et Dynamique par Résonance Magnétique Laboratoire Claude Fréjacques, URA 331 CEA / CNRS Service de Chimie Moléculaire CEA Saclay, France. N. Ollier, B. Boizot Laboratoire des Solides Irradiés CEA-CNRS-Ecole Polytechnique, France.

2 T. CharpentierActinet Workshop, September 23th, 2005 Overview of the study Understanding the effects of ionizing radiations (here  e-) on structural changes of nuclear waste glasses, in order to predict the modification of the glass during storage. Simulation of the  dose (auto) irradiation accumulated during storage by external electron irradiations: Van de Graaff accelarator,1.8 MeV, 20  A beam, ~ 1GGy dose. Use of simplified borosilicate glasses (mol.%) SiO B2O3 – 4.04 Al2O3 – 2.35 ZrO2 – A2O A2O = 1) x Na2O - (1-x) Li2O 2) x Na2O - (1-x) K2O Vitrified waste (CSD-V)

3 T. CharpentierActinet Workshop, September 23th, 2005 (Microscopic) Structural changes induced by  irradiations Increase of glass polymerization : Si(Q2)  Si(Q3) Increase of boron in trigonal environments : BO4  BO3 Formation of molecular oxygen Production of paramagnetic defects B. Boizot et al., NIM B , (2000) 500 N. Ollier et al., JNCS 323, (2003) 200. Most of the structural changes are assigned to the migration of alkali  Segregation of alkali under  irradiation ? These changes are less important in complex glass composition (close to the French Nuclear glass SON68) than simple ones : this could be explained by the decrease of the alkaline ions mobility The Mixed Alkali Effect (decreases considerably the alkali motion ) /  irradiations

4 T. CharpentierActinet Workshop, September 23th, 2005 The Mixed Alkali Effect Electrical conductivity (300°C) Tg MAE : significant decrease of the ionic conductivity Can the MAE cause a reduction of alkali migration under irradiation ?

5 T. CharpentierActinet Workshop, September 23th, 2005 MAS NMR of Quadrupolar Nuclei +3/2 +1/2 -1/2 -3/2 Central transition

6 T. CharpentierActinet Workshop, September 23th, B (I=3/2) MAS NMR

7 T. CharpentierActinet Workshop, September 23th, B MAS / MQMAS NMR MAS (1d) MQMAS (2d)

8 T. CharpentierActinet Workshop, September 23th, B MQMAS NMR BO3 2 sites BO4 2 sites

9 T. CharpentierActinet Workshop, September 23th, B MAS NMR

10 T. CharpentierActinet Workshop, September 23th, B MAS NMR : Mixed Alkali Effect

11 T. CharpentierActinet Workshop, September 23th, B MAS NMR : Mixed Alkali Effect Non-linear variation of the BO 3 /BO 4 ratio Na/Li : BO 3 /BO 4 minimum Na/K : BO 3 /BO 4 maximum

12 T. CharpentierActinet Workshop, September 23th, B MAS NMR :  irradiation effects Na/Li BO 4 to BO 3 conversion

13 T. CharpentierActinet Workshop, September 23th, B MAS NMR :  irradiation effects Na/K BO 4 to BO 4 /BO 3 conversionNo conversion

14 T. CharpentierActinet Workshop, September 23th, Al MAS NMR

15 T. CharpentierActinet Workshop, September 23th, Al MAS NMR : Mixed Alkali Effect AlO 4 - : Na + preferential charge compensator ?

16 T. CharpentierActinet Workshop, September 23th, Al MAS NMR :  irradiation effects Na/K,Na/Li Cq increases (site distortion increase). MAE : minimized effect K,NaNa,Li

17 T. CharpentierActinet Workshop, September 23th, Al MAS NMR : Mixed Alkali Effect Na/K,Na/Li Analytical model for f(Cq,nq) : Gaussian Isotropic Model (Cjzjek)

18 T. CharpentierActinet Workshop, September 23th, Al MAS NMR : Mixed Alkali Effect Na/K,Na/Li

19 T. CharpentierActinet Workshop, September 23th, Si MAS NMR Na,K Li,Na

20 T. CharpentierActinet Workshop, September 23th, Si RAMAN :  irradiation effects Na/K,Na/Li Na/Li Na/K 50/50 Q2Q2 Q3Q3 Irradiated Pristine MAE: modifier migration blocked Q2Q2 Q3Q3

21 T. CharpentierActinet Workshop, September 23th, Si MAS NMR / RAMAN Q2Q2 Q3Q3 Na/Li : Stable polymerizationLi : Polymerization increase

22 T. CharpentierActinet Workshop, September 23th, Na NMR Localisation of the alkali after the migration processes 1)migration to the surface XPS : No 2) bulk segregation Can NMR provides measurements to detect it ? Static (Non-rotating ) sample approach : Relaxation Time Measurment and SEDOR NMR

23 T. CharpentierActinet Workshop, September 23th, Na NMR : longitudinal relaxation inversion recovery experiment

24 T. CharpentierActinet Workshop, September 23th, Na NMR :  irradiation effects Na/Li

25 T. CharpentierActinet Workshop, September 23th, Na Spin Echo / SEDOR NMR 90 TT E(T) 23Na 7Li E(T) (Hahn Echo): Na-Na dipolar interactions 180 E(T) (SEDOR): Na-Na + Na-Li dipolar interactions 180

26 T. CharpentierActinet Workshop, September 23th, Na Spin Echo / SEDOR NMR

27 T. CharpentierActinet Workshop, September 23th, Na Spin Echo/SEDOR NMR :  irradiation effects Na/Li  : decrease of Na-Li dipolar interactions  Na clusterization ?

28 T. CharpentierActinet Workshop, September 23th, 2005 Conclusion MAE on the glass network structure Na/K : BO3/BO4 minimum - Na/Li : BO3/BO4 maximum MAE /  irradiation effects Na/K blocks the migration of BO4 compensators Na/Li blocks the migration of modifiers AlO4 – stable : site distortion increase Na preferential charge compensator ? Na clusterization? Ionic Irradiation (Au n+ ) (underway) N.Ollier et al, Journal of Physics : Condensed Matter 16 (2004) N.Ollier et al, Journal of Non-Crystalline Solids 341, (2004) 26.

29 T. CharpentierActinet Workshop, September 23th, 2005 Perpectives NMR of active materials : Auto-irradiation effects Special containment (rotor) system See D. Sakellariou

30 T. CharpentierActinet Workshop, September 23th, 2005 Perpectives : Heteronuclear correlation spectrosocopy Static sample NMR can be useful