Folie 1 Performance Investigation on the High-Resolution Wide-Swath SAR System Operating in Stripmap Quad-Pol and Ultra-Wide ScanSAR Mode DLR - Institut.

Slides:



Advertisements
Similar presentations
Surface Water and Ocean Topography (SWOT) Satellite Mission
Advertisements

IGARSS 2011, July , Vancouver, Canada Demonstration of Target Vibration Estimation in Synthetic Aperture Radar Imagery Qi Wang 1,2, Matthew Pepin.
A KU-BAND ATI SAR MISSION FOR TOTAL OCEAN SURFACE CURRENT VECTOR RETRIEVAL: CHALLENGES, CONCEPT, AND ERROR ANALYSIS. Paco López-Dekker, Francesco De Zan,
On Estimation of Soil Moisture & Snow Properties with SAR Jiancheng Shi Institute for Computational Earth System Science University of California, Santa.
Antarctic Ice Shelf 3D Cross-sectional Imaging using MIMO Radar A. Hari Narayanan UCL Electronic and Electrical Engineering, UK P. Brennan UCL Electronic.
M. Younis Design Optimization Aspects for Reflector Base Synthetic Aperture Radar Marwan Younis, Anton Patyuchenko, Sigurd Huber, and Gerhard Krieger,
Folie 1 Ambiguity Suppression by Azimuth Phase Coding in Multichannel SAR Systems DLR - Institut für Hochfrequenztechnik und Radarsysteme F. Bordoni, M.
DLR IPY Data Portfolio: TerraSAR-X High Resolution SAR Data from Space Erhard Diedrich Head of Division International Ground Segment DLR – German Remote.
COPS-GOP-WS3 Hohenheim 2006_04_10 Micro- Rain- Radar Local Area Weather Radar Cloud Radar Meteorological Institute University Hamburg Gerhard Peters.
Development of Active Phased Array Weather Radar
July 2015 doc.: IEEE /XXXXr0 July 2015
Doppler Radar From Josh Wurman Radar Meteorology M. D. Eastin.
Spaceborne Weather Radar
Radar Principles and Systems Part I
Page 1ENVISAT Cal/Val Workshop – ESRIN – 9/13 December 2002 ASAR On-board Instrument  Instrument Stability and Status  Instrument Adjustments  Tracking.
Interferometric Sounder Concept for Ice Sheet Mapping Review, Simulations, Spaceborne System, Future E. Rodriguez Jet Propulsion Laboratory California.
Marsis Ground Processing Overview and Data Analysis Approach M. Cartacci, A. Cicchetti, R. Noschese, S. Giuppi Madrid
Review Doppler Radar (Fig. 3.1) A simplified block diagram 10/29-11/11/2013METR
Spaceborne Radar for Snowfall Measurements
Remote Sensing and Active Tectonics Barry Parsons and Richard Walker Michaelmas Term 2011 Lecture 4.
FAA/NASA Joint University Program for Air Transportation Research Jeff Dickman Chris Bartone June 20, 2003 A New Anechoic Chamber for Nearfield Antenna.
Efficient design of a C-band aperture-coupled stacked microstrip array using Nexxim and Designer Alberto Di Maria German Aerospace Centre (DLR) – Microwaves.
ALOS-2 Mission Status and Basic Observation Scenario (BOS)
INTERFEROMETRIC ERROR SOURCES
Dr A VENGADARAJAN, Sc ‘F’, LRDE
25 Sept. 2006ERAD2006 Crossbeam Wind Measurements with Phased-Array Doppler Weather Radar Richard J. Doviak National Severe Storms Laboratory Guifu Zhang.
Junjie Wu, Jianyu Yang, et.al. Univ. of Electro. Sci. & Tech. of China
Ping Zhang, Zhen Li,Jianmin Zhou, Quan Chen, Bangsen Tian
Progresses of development of cfosat scatterometer
GISMO Simulation Study Objective Key instrument and geometry parameters Surface and base DEMs Ice mass reflection and refraction modeling Algorithms used.
Polarimetric Solid State Radar Design for CASA Student Test Bed
SWOT Near Nadir Ka-band SAR Interferometry: SWOT Airborne Experiment Xiaoqing Wu, JPL, California Institute of Technology, USA Scott Hensley, JPL, California.
IGARSS2011 : FR3.T01.1: THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L 1 THE BISTATIC SAR EXPERIMENT WITH ALOS / PALSAR AND Pi-SAR-L July.
Synthetic Aperture Radar Specular or Bragg Scatter? OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001.
Azimuthal SAR Interferogram (azisar) Sylvain Barbot, Institute of Geophysics and Planetary Sciences, Scripps Institution of Oceanography, University of.
Institute of Atmospheric Physics Fast Calibration of Weather Radar Systems for Multi Polarization Radar Measurements Jens Reimann, Martin Hagen DLR-Institute.
The Extraction of InSAR Information from Imagery of a Wind-Blown Tree Canopy with a Ground-Based SAR Keith Morrison & Muhammad Yasin Department of Aerospace,
Microwaves and Radar Institute Distributed Imaging with TSX and TDX Pau Prats, Paco López-Dekker, Francesco De Zan, Steffen Wollstadt,
MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts High resolution SAR imaging using random pulse timing Dehong Liu IGARSS’ 2011 Vancouver,
PARALLEL FREQUENCY RADAR VIA COMPRESSIVE SENSING
PR-2 Radar in Aguadilla Ricardo Ríos Olmo Advisor: Dr. José Colom.
Page 1 ASAR Validation Review - ESRIN – December 2002 IM and WS Mode Level 1 Product quality update F Introduction F IM Mode Optimisation F Updated.
InSAR Application for mapping Ice Sheets Akhilesh Mishra Dec 04, 2015.
Doc.: IEEE RR-02/036 Submission March 2002 Rebecca Chan, Industry CanadaSlide 1 Simulation on Aggregate Interference from Wireless Access Systems.
Page 1 ASAR Validation Review - ESRIN – December 2002 Advanced Technology Centre ASAR APP & APM Image Quality Peter Meadows & Trish Wright  Properties.
Chongwen DUAN, Weidong HU, Xiaoyong DU ATR Key Laboratory, National University of Defense Technology IGARSS 2011, Vancouver.
1 A conical scan type spaceborne precipitation radar K. Okamoto 1),S. Shige 2), T. Manabe 3) 1: Tottori University of Environmental Studies, 2: Kyoto University.
Kavaya-1 Coherent Doppler Lidar Roadmap to Both the NRC Decadal Survey “Science Demonstration” and “Operational” Missions Michael J. Kavaya Jirong Yu Upendra.
RADAR ANTENNA. Functions of Radar Antenna Transducer. Concentrates the radiated energy in one direction (Gain). Collects echo energy scattered back to.
IGARSS’ July, Vancouver, Canada Subsidence Monitoring Using Polarimetric Persistent Scatterers Interferometry Victor D. Navarro-Sanchez and Juan.
A study on the coexistence between Direct Air to Ground Communication (DA2GC) and Radars in the 5 GHz band Peter Trommelen, Rob van Heijster, Arne Theil.
LFM Pulse Compression Sidelobe Reduction Techniques
A Concept for Spaceborne Imaging of the Base of Terrestrial Ice Sheets and Icy Bodies in the Solar System Ken Jezek, Byrd Polar Research Center E. Rodriguez,
EEE381B Pulsed radar A pulsed radar is characterized by a high power transmitter that generates an endless sequence of pulses. The rate at which the pulses.
DISPLACED PHASE CENTER ANTENNA SAR IMAGING BASED ON COMPRESSED SENSING Yueguan Lin 1,2,3, Bingchen Zhang 1,2, Wen Hong 1,2 and Yirong Wu 1,2 1 National.
Camp Sentinel II Radar System [4] -Installed outside US Army Camp in Vietnam in Antenna Dimensions: 3.5 m diameter x 1 m tall antenna. -2 kW.
Eng.: Ahmed Abdo AbouelFadl
Alternating Polarization ´Single´ Look Complex Product Status
GEOGRAPHIC INFORMATION SYSTEMS & RS INTERVIEW QUESTIONS ANSWERS
A study on the coexistence between Direct Air to Ground Communication (DA2GC) and Radars in the 5 GHz band Peter Trommelen, Rob van Heijster,
Final exam information
Developed by Eastwood Im Jet Propulsion Laboratory
Open book, open notes, bring a calculator
For the next 4 problems, consider the following:
Soil Moisture Active Passive (SMAP) Satellite
ECE 5233 Satellite Communications
Open book, open notes, bring a calculator
A KU-BAND GEOSYNCHRONOUS SYNTHETIC APERTURE RADAR MISSION ANALYSIS WITH MEDIUM TRANSMITTED POWER AND MEDIUM-SIZED ANTENNA Josep Ruiz Rodon, Antoni Broquetas,
Introduction to SAR Imaging
Presentation transcript:

Folie 1 Performance Investigation on the High-Resolution Wide-Swath SAR System Operating in Stripmap Quad-Pol and Ultra-Wide ScanSAR Mode DLR - Institut für Hochfrequenztechnik und Radarsysteme F. Bordoni, M. Younis, G. Krieger IGARSS 2011, July, Vancouver, Canada

Microwaves and Radar Institute 2 Outline Introduction HRWS (High-Resolution Wide-Swath) SAR (Synthetic Aperture Radar) System Reference Parameters Stripmap, Quad-Pol (Quadrature Polarimetric) Mode Timing & Constraints Proposed Solution Performance: NESZ (Noise Equivalent Sigma Zero) RASR (Range Ambiguity to Signal Ratio) AASR (Azimuth Ambiguity to Signal Ratio) ScanSAR Mode: Ultra-Width Swath Timing & Constraints Proposed Solution Performance (NESZ, RASR, AASR, Scalloping)

Microwaves and Radar Institute 3 Displaced Phase Center Antenna >> high spatial resolution Multichannel Antenna Wide transmit pattern >> wide swath R(t) nadir H orb Digital Beamforming SCORE algorithm >> high gain HRWS (High-Resolution Wide-Swath) SAR System The HRWS SAR system is conceived to overcome the conventional trade-off between resolution and swath width Current SAR: 1 m v.s. 10 km; 16 m v.s. 100 km HRWS: 1 m v.s. 70 km (stripmap single-pol)

Microwaves and Radar Institute 4 Monostatic System Planar phased array antenna HRWS Reference System Parameters 2 Tile 1 Tile 12 Tile... Panel 1 Panel 7 Panel ,06 m 8,75 m Total Nr. TRMs (Transmit-Receive Modules) Elevation: 12 dig. chan. Azimuth: 7 dig. chan. 1,25 m 0,088 m Orbit Height: 520 km Antenna Tilt Angle: 34,3 deg RF Center Frequency: 9,6 GHz Pulse Bandwidth: 408 ÷ 194 MHz Processed Doppler bandwidth: 5950 Hz (stripmap) Averaged Tx Power: 2171 W Fully Polarimetric SCORE operation Tx patterns in az. and elev. by Phase Spoiling

Microwaves and Radar Institute 5 HRWS Basic Performance The basic performance of the HRWS has been already investigated In Stripmap single-pol Mode: o 6 subswaths cover the complete access range o Swath width: km o Spatial resolution: 1 m x 1 m o NESZ < dB o RASR: < - 28 dB o AASR < - 26 dB How performs the HRWS in Quad-Pol, ScanSAR Modes?

Microwaves and Radar Institute 6 Stripmap Quad-Pol: Timing Diagram Transmit alternately vertical & horizontal linear polarized pulses  Double PRF (Pulse Repetition Frequency) Single-pol Quad-pol Timing Diagram Spatial resolution: 1 m x 1 m Nr. Subswaths: 12 Swath width smaller: km Spatial resolution: 1 m x 1 m Nr. Subswaths: 6 Subswath width: km PRF: 1650 – 1780 HzPRF double: 3400 – 3800 Hz

Microwaves and Radar Institute 7 Requirements & Constraints 2)Multichannel: Less degrees of freedom in the PRF choice (PRF uniformity*)  AASR (particularly low)  NESZ (multichannel processing)  Flexibility Design Elevation Patterns  subswath width (RASR, NESZ)  Low sidelobe level (RASR) Severe requirements and constraints characterize the Quad-pol mode 1)Quad-pol: High PRF  RASR (critical especially in Cross-Pol) *PRF matched to the antenna length and No. of apertures > regular sampling in azimuth results

Microwaves and Radar Institute dB  RASR Cross-pol < - 19 dB Elev. pattern design crucial to meet the RASR requirements in Cross-Pol Hamming vs. Uniform: improvement in far range - 4 dB near range far range  Tx Phase Spoiling and uniform tapering (mainlobe  subswath width) Rx Hamming window (  side lobe level) NESZ RASR Pattern Design & RASR in Cross-Pol

Microwaves and Radar Institute 9 Stripmap Quadpol: RASR in Co-Pol & NESZ -27 dB - 19,5 dB  RASR Co-Pol < - 27 dB  NESZ < - 19,5 dB Range Ambiguity Signal Ratio: Co-Pol Noise Equivalent Sigma Zero (spatial resolution: 1 m x 1m)

Microwaves and Radar Institute 10 Stripmap Quadpol: Azimuth Performance 1,1 m - 30,5 dB  Az. Res. < 1,1 m  AASR < - 30,5 dB Azimuth Resolution Azimuth Ambiguity Signal Ratio

Microwaves and Radar Institute 11 Swath width of 375 km  complete imaging of the Earth with a repeat time of 8 days Ultra-Wide ScanSAR 375 km Imaging of the complete acces range (375 km) in a single pass 6 bursts // 6 subswaths Swath width: 375 km Spatial resolution: 1m x ?m

Microwaves and Radar Institute Rx Patt. ___ Tx Patt. ___ 2-way Patt. Pattern Design & Performance Azimuth pattern shape key influence on ScanSAR performance The Phase Spoiling technique is used to obtain the Tx pattern

Microwaves and Radar Institute 13 UW ScanSAR: Azimuth Performance -24 dB 8,7 m 2,1 dB  Az. Res. < 8,7 m  AASR < - 24 dB  Scalloping < 2,1 dB Azimuth Resolution Azimuth Ambiguity Signal Ratio Scalloping Stripmap: 1 m Scansar: 7 m gives high scalloping (>3.5dB)

Microwaves and Radar Institute dB UW ScanSAR: NESZ & RASR - 22,6 dB  NESZ < - 22,6 dB  RASR < - 28 dB Noise Equivalent Sigma Zero Range Ambiguity Signal Ratio ground range resolution: 1 m

Microwaves and Radar Institute 15 Summary and Conclusions o Quad-Pol, Stripmap Mode o 12 subswaths, swath width: km o Spatial resolution: 1 m x 1 m o NESZ < dB o RASR: Cross-Pol < - 19 dB, Co-Pol < - 27 dB o AASR < dB o ScanSAR Mode: Ultra-Width Swath o 1 swath, swath width 375 km o Spatial resolution: 1 m x 9 m o NESZ < dB o RASR < - 28 dB o AASR < - 24 dB o Scalloping < 2.1 dB