Does hyperviscosity spoil the inertial range? A. Brandenburg, N. E. L. Haugen Phys. Rev. E astro-ph/0402281.

Slides:



Advertisements
Similar presentations
Experimental tasks Spectra Extend to small scale; wavenumber dependence (Taylor hyp.); density, flow Verify existence of inertial range Determine if decorrelation.
Advertisements

Some questions on convection that could be addressed through another UK field program centered at Chilbolton Dan Kirshbaum 1.
Canopy Spectra and Dissipation John Finnigan CSIRO Atmospheric Research Canberra, Australia.
Non-Fickian diffusion and Minimal Tau Approximation from numerical turbulence A.Brandenburg 1, P. Käpylä 2,3, A. Mohammed 4 1 Nordita, Copenhagen, Denmark.
Focus: Detecting vortices/turbulence in pure superfluid 4 He at T
How common is reconnection in a turbulent plasma? G. Stenberg, M. André, A. Vaivads, Yu. V. Khotyaintsev (IRF, Uppsala) Retinò (Austrian Academy of Sceince,
Fast Magnetic Reconnection B. Pang U. Pen E. Vishniac.
A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS A REVIEW OF WHISTLER TURBULENCE BY THREE- DIMENSIONAL PIC SIMULATIONS S. Peter Gary,
Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)
Direct numerical simulation study of a turbulent stably stratified air flow above the wavy water surface. O. A. Druzhinin, Y. I. Troitskaya Institute of.
New Mechanism of Generation of Large-Scale Magnetic Field in Turbulence with Large-Scale Velocity Shear I. ROGACHEVSKII, N. KLEEORIN, E. LIVERTS Ben-Gurion.
Shock Acceleration at an Interplanetary Shock: A Focused Transport Approach J. A. le Roux Institute of Geophysics & Planetary Physics University of California.
1 Forced – decaying Helical – nonhelical. 2 Points of the talk Resistive effects during inverse transfer B-field does not care about irrotational part.
The Pencil Code -- a high order MPI code for MHD turbulence Anders Johansen (Sterrewacht Leiden)‏ Axel Brandenburg (NORDITA, Stockholm)‏ Wolfgang Dobler.
Large Eddy Simulation of Rotating Turbulence Hao Lu, Christopher J. Rutland and Leslie M. Smith Sponsored by NSF.
Tony Hyun Kim (Partner: Connor McEntee) 11/17/ MW2-5 Prof. Roland.
Magneto-hydrodynamic turbulence: from the ISM to discs
Structure functions and cancellation exponent in MHD: DNS and Lagrangian averaged modeling Pablo D. Mininni 1,* Jonathan Pietarila Graham 1, Annick Pouquet.
Sunspots: the interface between dynamos and the theory of stellar atmospheres Axel Brandenburg (Nordita/Stockholm) 70 yr Guenther.
A generalization of the Taylor-Green vortex to MHD: ideal and dissipative dynamics Annick Pouquet Alex Alexakis*, Marc-Etienne Brachet*, Ed Lee, Pablo.
Magnetic dynamo over different astrophysical scales Axel Brandenburg & Fabio Del Sordo (Nordita) with contributions from many others seed field primordial.
Critical issues to get right about stellar dynamos Axel Brandenburg (Nordita, Copenhagen) Shukurov et al. (2006, A&A 448, L33) Schekochihin et al. (2005,
Effect of Magnetic Helicity on Non-Helical Turbulent Dynamos N. KLEEORIN and I. ROGACHEVSKII Ben-Gurion University of the Negev, Beer Sheva, ISRAEL.
Magneto-rotational instability Axel Brandenburg (Nordita, Copenhagen)
High-performance multi-user code development with Google Code  Current status  (...just google for Pencil Code)
Carlo F. Barenghi School of Mathematics University of Newcastle, UK Exotic turbulence opportunities in superfluid helium.
Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008.
Comparison of convective boundary layer velocity spectra calculated from large eddy simulation and WRF model data Jeremy A. Gibbs and Evgeni Fedorovich.
Accretion disc dynamos B. von Rekowski, A. Brandenburg, 2004, A&A 420, B. von Rekowski, A. Brandenburg, W. Dobler, A. Shukurov, 2003 A&A 398,
1 LES of Turbulent Flows: Lecture 6 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Bern, MHD, and shear Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg  Calgary) Tarek.
Makoto Tsubota,Tsunehiko Araki and Akira Mitani (Osaka), Sarah Hulton (Stirling), David Samuels (Virginia Tech) INSTABILITY OF VORTEX ARRAY AND POLARIZATION.
Gyrokinetic simulation of electron turbulence spectrum
Solar activity as a surface phenomenon Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Dynamo theory and magneto-rotational instability Axel Brandenburg (Nordita) seed field primordial (decay) diagnostic interest (CMB) AGN outflows MRI driven.
Large Scale Dynamo Action in MRI Disks Role of stratification Dynamo cycles Mean-field interpretation Incoherent alpha-shear dynamo Axel Brandenburg (Nordita,
Direct simulation of planetary and stellar dynamos II. Future challenges (maintenance of differential rotation) Gary A Glatzmaier University of California,
Catastrophic  -quenching alleviated by helicity flux and shear Axel Brandenburg (Nordita, Copenhagen) Christer Sandin (Uppsala) Collaborators: Eric G.
Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear.
This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344 Lawrence Livermore.
Using Observations and Theory to Evaluate Model Convergence at Fronts Ben Harvey Thanks to: Chloe Eagle, Humphrey Lean (Met Reading) John Methven.
Double diffusive mixing (thermohaline convection) 1. Semiconvection ( ⇋ diffusive convection) 2. saltfingering ( ⇋ thermohaline mixing) coincidences make.
Molecular Dynamics Study of Ballistic Rearrangement of Surface Atoms During Ion Bombardment on Pd(001) Surface Sang-Pil Kim and Kwang-Ryeol Lee Computational.
Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)
ITP 2008 MRI Driven turbulence and dynamo action Fausto Cattaneo University of Chicago Argonne National Laboratory.
On the Turbulence Spectra of Electron Magnetohydrodynamics E. Westerhof, B.N. Kuvshinov, V.P. Lakhin 1, S.S. Moiseev *, T.J. Schep FOM-Instituut voor Plasmafysica.
Numerical simulations of the SN driven ISM Axel Brandenburg (NORDITA, Copenhagen, Denmark) Boris Gudiksen (Stockholm Observatory, Sweden) Graeme Sarson.
High-order codes for astrophysical turbulence
1 A unified description of ripples and dunes in rivers 5 m Douglas Jerolmack, Geophysics, MIT; With David Mohrig and Brandon McElroy.
Self-assembly of shallow magnetic spots through strongly stratified turbulence Axel Brandenburg (Nordita/Stockholm) Kemel+12 Brandenburg+13 Warnecke+11.
Compressibility and scaling in the solar wind as measured by ACE spacecraft Bogdan A. Hnat Collaborators: Sandra C. Chapman and George Rowlands; University.
Self-organized magnetic structures in computational astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+13Warnecke+11 Käpylä+12.
Statistical Properties (PS, PDF) of Density Fields in Isothermal Hydrodynamic Turbulent Flows Jongsoo Kim Korea Astronomy and Space Science Institute Collaborators:
Dynamo action in shear flow turbulence Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg.
Mesoscale Modeling with a 3D Turbulence Scheme Jocelyn Mailhot and Yufei Zhu (Claude Pelletier) Environment Canada MSC / MRB 3 rd Annual Meeting on CRTI.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Turbulence research at Nordita 1.Bottleneck effect 2.Magnetic fields (active vector) 3.Passive scalar diffusion Haugen & Brandenburg (2006, Phys. Fl. 18,
Computational Modeling of 3D Turbulent Flows With MC2 Claude Pelletier Environment Canada MSC / MRB.
Prandtl number dependence of magnetic-to-kinetic dissipation 1.What gets in, will get out 2.Even for vanishing viscosity 3.What if magnetic fields 4. contribute?
Spectrum and small-scale structures in MHD turbulence Joanne Mason, CMSO/University of Chicago Stanislav Boldyrev, CMSO/University of Madison at Wisconsin.
Pencil Code: multi-purpose and multi-user maintained Axel Brandenburg (Nordita, Stockholm) Wolfgang Dobler (Univ. Calgary) and now many more…. (...just.
1 LES of Turbulent Flows: Lecture 13 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Physical conditions in astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Overview of dynamos in stars and galaxies
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Large scale simulations of astrophysical turbulence
CIRRUS IN LEM & LARGE-SCALE MODELS
Scale-dependence of magnetic helicity in the solar wind
Energy spectra of small scale dynamos with large Reynolds numbers
Catastrophic a-quenching alleviated by helicity flux and shear
Presentation transcript:

Does hyperviscosity spoil the inertial range? A. Brandenburg, N. E. L. Haugen Phys. Rev. E astro-ph/

Brandenburg: hyperviscosity2 Hydromagnetic turbulence and subgrid scale models? Want to shorten diffusive subrange –Waste of resources Want to prolong inertial range –Focus of essential physics Reasons to be worried about hyperviscosity –Shallower spectra –Wrong amplitudes of resulting large scale fields (Brandenburg & Sarson 2002, PRL 88, )

Brandenburg: hyperviscosity3 Simulations at With hyperviscosity Normal viscosity Biskamp & Müller (2000)

Brandenburg: hyperviscosity4 3 rd order hyperviscosity Different resolution: bottleneck & inertial range Traceless rate of strain tensor 3 rd order dynamical hyperviscosity  3 Hyperviscous heat

Brandenburg: hyperviscosity5 Bottleneck in the hydro Kaneda et al. (2003) on the Earth simulator, meshpoints Dobler et al. (2003), meshpoints, PRE 68,

Brandenburg: hyperviscosity6 Comparison: hyper vs normal onset of bottleneck at same position height of bottleneck increased

Brandenburg: hyperviscosity7 Decay run with hyperviscosity Correction now compatible with She-Leveque Decay rate just as in ordinary turbulence

Brandenburg: hyperviscosity8 Visualization

9 Dynamo saturation with hyperdiffusivity for ordinary hyperdiffusion ratio 125 instead of 5

Brandenburg: hyperviscosity10 Conclusions Hyperviscosity allows for a reasonable guess of what one might see a decade later using direct simulation