TRIGONOMETRY. Sign for sin , cos  and tan  Quadrant I 0° <  < 90° Quadrant II 90 ° <  < 180° Quadrant III 180° <  < 270° Quadrant IV 270 ° <  <

Slides:



Advertisements
Similar presentations
Finding Reference Angles
Advertisements

13.3 Trig functions of general angles
Identify a unit circle and describe its relationship to real numbers
Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Work out the answer Hit the down arrow to check.
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Work out the answer Hit the down arrow to check.
Evaluating Sine & Cosine and and Tangent (Section 7.4)
1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
Section 5.2 Trigonometric Functions of Real Numbers Objectives: Compute trig functions given the terminal point of a real number. State and apply the reciprocal.
Signs of functions in each quadrant. Page 4 III III IV To determine sign (pos or neg), just pick angle in quadrant and determine sign. Now do Quadrants.
Aim: How do we find the exact values of trig functions? Do Now: Evaluate the following trig ratios a) sin 45  b) sin 60  c) sin 135  HW: p.380 # 34,36,38,42.
2.3 Evaluating Trigonometric Functions for any Angle JMerrill, 2009.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 6.3 Properties of the Trigonometric Functions.
Trigonometric Functions of Any Angle 4.4. Definitions of Trigonometric Functions of Any Angle Let  is be any angle in standard position, and let P =
Trig Functions of Any Angle Lesson 2.3. Angles Beyond 90°  Expand from the context of angles of a right triangle  Consider a ray from the origin through.
Section 4.4. In first section, we calculated trig functions for acute angles. In this section, we are going to extend these basic definitions to cover.
Half-angle formulae Trigonometry.
(a) How to memorize the trigonometric identities? Trigonometric Identities Easy Memory Tips: Quadrant  is acute sin cos tan IIIII IV I sin  -  -  
Mrs. Crespo Definition  Let θ be a non-quadrantal angle in standard position.  The reference angle for θ is the acute angle θ R that the terminal.
Wednesday, Jan 9, Objective 1 Find the reference angle for a given angle A reference angle for an angle is the positive acute angle made by the.
7.3 Trigonometric Functions of Angles. Angle in Standard Position Distance r from ( x, y ) to origin always (+) r ( x, y ) x y  y x.
Section 7.2 The Inverse Trigonometric Functions (Continued)
Trigonometric Functions on the
Trigonometric Functions Let (x, y) be a point other then the origin on the terminal side of an angle  in standard position. The distance from.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Find the period of the function y = 4 sin x
EXAMPLE 1 Use an inverse tangent to find an angle measure
Find the reference angle
Trigonometry for Any Angle
Section 13.6a The Unit Circle.
radius = r Trigonometric Values of an Angle in Standard Position 90º
TRIGONOMETRY II Learning Objectives : Understanding and use the concept of the values of sin θ, kos θ and tan θ (0°≤ θ ≤ 360°) to solve problems.
Chapter 6 – Trigonometric Functions: Right Triangle Approach Trigonometric Functions of Angles.
Chapter 4 Trigonometric Functions Trig Functions of Any Angle Objectives:  Evaluate trigonometric functions of any angle.  Use reference angles.
Warm-Up 8/26 Simplify the each radical expression
Using Fundamental Identities To Find Exact Values. Given certain trigonometric function values, we can find the other basic function values using reference.
Evaluating Trigonometric Functions (Precalculus Review 3) September 10th, 2015.
These angles will have the same initial and terminal sides. x y 420º x y 240º Find a coterminal angle. Give at least 3 answers for each Date: 4.3 Trigonometry.
Reciprocal functions secant, cosecant, cotangent Secant is the reciprocal of cosine. Reciprocal means to flip the ratio. Cosecant is the reciprocal of.
Trigonometry Exact Value Memory Quiz A Trigonometry Exact Value Memory Quiz A.
REVIEW Reference angle.
4.4 – Trigonometric Functions of any angle. What can we infer?? *We remember that from circles anyway right??? So for any angle….
Warm-Up 3/ Find the measure of
4.4 Trig Functions of Any Angle Reference Angles Trig functions in any quadrant.
Math 20-1 Chapter 2 Trigonometry
(1) Sin, Cos or Tan? x 7 35 o S H O C H A T A O Answer: Tan You know the adjacent and want the opposite.
Unit Circle ( √3, 1 ) 2 2 ( 1, √3 ) 2 2 ( √2, √2 ) ˚ 45˚ 60˚
TRIGONOMETRY – Functions 1 We will now place the angle in the x–y plane. The initial side of the angle will always be placed on the (+) side of the x –
Trigonometry I Angle Ratio & Exact Values. By Mr Porter.
A. Calculate the value of each to 4 decimal places: i)sin 43sin 137sin 223sin 317. ii) cos 25cos 155cos 205cos 335. iii)tan 71tan 109 tan 251tan 289.
8-3 Trigonometry Part 2: Inverse Trigonometric Functions.
Trigonometry II Harder Exact Values and Simple Trig Equations. By Mr Porter.
C H. 4 – T RIGONOMETRIC F UNCTIONS 4.4 – Trig Functions of Any Angle.
Chapter 7 Trigonometry Chung Tai Educational Press © Chapter Examples Quit Chapter 7 Trigonometry Right-angled Triangles Adjacent side The side.
Section 4.4 Trigonometric Functions of Any Angle.
Trigonometric Ratios of Any Angle
4.4 Trig Functions of Any Angle Objectives: Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
EXAMPLE 1 Use an inverse tangent to find an angle measure Use a calculator to approximate the measure of A to the nearest tenth of a degree. SOLUTION Because.
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
5.2 Understanding Angles terminal arm q initial arm standard position
Warm Up Use trigonometric identities to simplify: csc ∙tan
Do Now: A point on the terminal side of an acute angle is (4,3)
2.3 Evaluating Trigonometric Functions for any Angle
Aim: What are the double angle and half angle trig identities?
4.4 Trig Functions of any Angle
Properties of Trig Fcts.
Solving Trigonometric Equations by Algebraic Methods
Double-Angle, Half-Angle Formulas
Given A unit circle with radius = 1, center point at (0,0)
Presentation transcript:

TRIGONOMETRY

Sign for sin , cos  and tan  Quadrant I 0° <  < 90° Quadrant II 90 ° <  < 180° Quadrant III 180° <  < 270° Quadrant IV 270 ° <  < 360° ALL (+) SIN  (+) TAN  (+) COS  (+)  =  Let  = acute angle  = 180 °−   = 180 °+   = 360 °−     

Finding angle  when given sin  Given that 0 °    360°, find  when sin  = sin  = − Quadrant II 90 ° <  < 180° SIN  (+)  = 180 °−  Quadrant III 180 ° <  < 270° TAN  (+)  = 180 °+  Quadrant IV 270 ° <  < 360° COS  (+)  = 360 °−  sign (+) == sin  = 50° (acute angle)   = 50°, 130° Quad I & Quad II Quadrant I 0 ° <  < 90°  =  sign ( − ) Quad III & Quad IV == sin  = 35°   = 180° + 35°, 360°−35° = 215°, 325°

Finding angle  when given cos  Given that 0 °    360°, find  when (a) (a) cos  = (b) (b) cos  = − Quadrant 2 90 ° <  < 180° SIN  (+)  = 180 °−  Quadrant ° <  < 270° TAN  (+)  = 180 °+  Quadrant ° <  < 360° COS  (+)  = 360 °−  sign(+) == cos  = 40°   = 40°, 360 − 40° = 40°, 320° Quad I & Quad IV Quadrant I 0 ° <  < 90°  =  sign ( − ) Quad II & Quad III == cos  = 55°   = 180° −55°, 180°+35° = 125°, 235°

Find angle  when given tan  Given that 0 °    360°, find  when (a) (a) tan  = (b) (b) tan  = −2.5 Quadrant 2 90 ° <  < 180° SIN  (+)  = 180 °−  Quadrant ° <  < 270° TAN  (+)  = 180 °+  Quadrant ° <  < 360° KOS  (+)  = 360 °−  sign (+) == tan  = 60°29’ Hence  = 60°29’, 180° + 60°29’ = 60°29’, 240° 29’ Quadrant I and Quadrant 3 Quadrant 1 0 ° <  < 90°  =  sign ( − ) Quadrant 2 and Quadrant 4 == tan  = 68°12’ Hence  = 180° − 68°12’, 360°−68°12’ = 111°48’, 291°48’

Practice makes perfect!!! 1. Given sin x° = and 90°  x  180°, find x. 2. Given cos x = cos 34° and 270°  x  360°, find x. 3. Given cos x = − and 90°  x  180°, find x. 4. Given tan x = 0.8 and 180°  x  360°, find x. 5. Given tan x = − and 270°  x  360°, find x. Answer: (1) 131° (2)326° (3)133°50’ (4)218°40’ (5)321°