Example in SSA X := Y op Z in out F X := Y op Z (in) = in [ { X ! Y op Z } X :=  (Y,Z) in 0 out F X :=   (in 0, in 1 ) = (in 0 Å in 1 ) [ { X ! E |

Slides:



Advertisements
Similar presentations
SSA and CPS CS153: Compilers Greg Morrisett. Monadic Form vs CFGs Consider CFG available exp. analysis: statement gen's kill's x:=v 1 p v 2 x:=v 1 p v.
Advertisements

Data-Flow Analysis II CS 671 March 13, CS 671 – Spring Data-Flow Analysis Gather conservative, approximate information about what a program.
School of EECS, Peking University “Advanced Compiler Techniques” (Fall 2011) SSA Guo, Yao.
Chapter 9 Code optimization Section 0 overview 1.Position of code optimizer 2.Purpose of code optimizer to get better efficiency –Run faster –Take less.
1 CS 201 Compiler Construction Lecture 3 Data Flow Analysis.
Course Outline Traditional Static Program Analysis –Theory Compiler Optimizations; Control Flow Graphs Data-flow Analysis – today’s class –Classic analyses.
CS412/413 Introduction to Compilers Radu Rugina Lecture 37: DU Chains and SSA Form 29 Apr 02.
1 Code Optimization. 2 The Code Optimizer Control flow analysis: control flow graph Data-flow analysis Transformations Front end Code generator Code optimizer.
Components of representation Control dependencies: sequencing of operations –evaluation of if & then –side-effects of statements occur in right order Data.
Program Representations. Representing programs Goals.
1 Constant Propagation for Loops with Factored Use-Def Chains Reporter : Lai, Yen-Chang.
1 CS 201 Compiler Construction Lecture 7 Code Optimizations: Partial Redundancy Elimination.
6/9/2015© Hal Perkins & UW CSEU-1 CSE P 501 – Compilers SSA Hal Perkins Winter 2008.
Common Sub-expression Elim Want to compute when an expression is available in a var Domain:
1 Copy Propagation What does it mean? Given an assignment x = y, replace later uses of x with uses of y, provided there are no intervening assignments.
1 CS 201 Compiler Construction Lecture 5 Code Optimizations: Copy Propagation & Elimination.
Recap from last time We were trying to do Common Subexpression Elimination Compute expressions that are available at each program point.
Course project presentations No midterm project presentation Instead of classes, next week I’ll meet with each group individually, 30 mins each Two time.
Representing programs Goals. Representing programs Primary goals –analysis is easy and effective just a few cases to handle directly link related things.
Recap from last time Saw several examples of optimizations –Constant folding –Constant Prop –Copy Prop –Common Sub-expression Elim –Partial Redundancy.
Administrative info Subscribe to the class mailing list –instructions are on the class web page, click on “Course Syllabus” –if you don’t subscribe by.
1 Intermediate representation Goals: –encode knowledge about the program –facilitate analysis –facilitate retargeting –facilitate optimization scanning.
Global optimization. Data flow analysis To generate better code, need to examine definitions and uses of variables beyond basic blocks. With use- definition.
Administrative info Subscribe to the class mailing list –instructions are on the class web page, which is accessible from my home page, which is accessible.
Another example p := &x; *p := 5 y := x + 1;. Another example p := &x; *p := 5 y := x + 1; x := 5; *p := 3 y := x + 1; ???
From last class: CSE Want to compute when an expression is available in a var Domain:
1 CS 201 Compiler Construction Lecture 3 Data Flow Analysis.
Data Flow Analysis Compiler Design October 5, 2004 These slides live on the Web. I obtained them from Jeff Foster and he said that he obtained.
Loop invariant detection using SSA An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose single.
CS 412/413 Spring 2007Introduction to Compilers1 Lecture 29: Control Flow Analysis 9 Apr 07 CS412/413 Introduction to Compilers Tim Teitelbaum.
Class canceled next Tuesday. Recap: Components of IR Control dependencies: sequencing of operations –evaluation of if & then –side-effects of statements.
1 Copy Propagation What does it mean? – Given an assignment x = y, replace later uses of x with uses of y, provided there are no intervening assignments.
Common Sub-expression Elim Want to compute when an expression is available in a var Domain:
Projects. Dataflow analysis Dataflow analysis: what is it? A common framework for expressing algorithms that compute information about a program Why.
Recap from last time: live variables x := 5 y := x + 2 x := x + 1 y := x y...
Course project presentations Midterm project presentation Originally scheduled for Tuesday Nov 4 th Can move to Th Nov 6 th or Th Nov 13 th.
Machine-Independent Optimizations Ⅰ CS308 Compiler Theory1.
Global optimization. Data flow analysis To generate better code, need to examine definitions and uses of variables beyond basic blocks. With use- definition.
Schedule Midterm out tomorrow, due by next Monday Final during finals week Project updates next week.
Direction of analysis Although constraints are not directional, flow functions are All flow functions we have seen so far are in the forward direction.
PSUCS322 HM 1 Languages and Compiler Design II IR Code Optimization Material provided by Prof. Jingke Li Stolen with pride and modified by Herb Mayer PSU.
Recap from last time We saw various different issues related to program analysis and program transformations You were not expected to know all of these.
From last class. The above is Click’s solution (PLDI 95)
Precision Going back to constant prop, in what cases would we lose precision?
1 CS 201 Compiler Construction Data Flow Analysis.
What’s in an optimizing compiler?
Detecting Equality of Variables in Programs Bowen Alpern, Mark N. Wegman, F. Kenneth Zadeck Presented by: Abdulrahman Mahmoud.
Program Representations. Representing programs Goals.
1 CS 201 Compiler Construction Lecture 2 Control Flow Analysis.
CS412/413 Introduction to Compilers and Translators April 2, 1999 Lecture 24: Introduction to Optimization.
Loops Simone Campanoni
CS 412/413 Spring 2005Introduction to Compilers1 CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 30: Loop Optimizations and Pointer Analysis.
Dataflow analysis.
Static Single Assignment
Program Representations
CSC D70: Compiler Optimization LICM: Loop Invariant Code Motion
Fall Compiler Principles Lecture 8: Loop Optimizations
Machine-Independent Optimization
Topic 10: Dataflow Analysis
Code Generation Part III
Dataflow analysis.
Code Optimization Overview and Examples Control Flow Graph
Code Generation Part III
Optimizations using SSA
Fall Compiler Principles Lecture 10: Loop Optimizations
Interval Partitioning of a Flow Graph
Data Flow Analysis Compiler Design
EECS 583 – Class 7 Static Single Assignment Form
CSC D70: Compiler Optimization LICM: Loop Invariant Code Motion
CSE P 501 – Compilers SSA Hal Perkins Autumn /31/2019
Presentation transcript:

Example in SSA X := Y op Z in out F X := Y op Z (in) = in [ { X ! Y op Z } X :=  (Y,Z) in 0 out F X :=   (in 0, in 1 ) = (in 0 Å in 1 ) [ { X ! E | Y ! E 2 in 0 Æ Z ! E 2 in 1 } in 1

Example in SSA

What about pointers? Pointers complicate SSA. Several options. Option 1: don’t use SSA for pointed to variables Option 2: adapt SSA to account for pointers Option 3: define src language so that variables cannot be pointed to (eg: Java)

SSA helps us with CSE Let’s see what else SSA can help us with Loop-invariant code motion

Two steps: analysis and transformations Step1: find invariant computations in loop –invariant: computes same result each time evaluated Step 2: move them outside loop –to top if used within loop: code hoisting –to bottom if used after loop: code sinking

Example

Detecting loop invariants An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose defs are outside of L (inductive cases) –it’s a pure computation all of whose args are loop- invariant –it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Computing loop invariants Option 1: iterative dataflow analysis –optimistically assume all expressions loop-invariant, and propagate Option 2: build def/use chains –follow chains to identify and propagate invariant expressions Option 3: SSA –like option 2, but using SSA instead of ef/use chains

Example using def/use chains An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose defs are outside of L (inductive cases) –it’s a pure computation all of whose args are loop-invariant –it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using def/use chains An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose defs are outside of L (inductive cases) –it’s a pure computation all of whose args are loop-invariant –it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Example using def/use chains An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose defs are outside of L (inductive cases) –it’s a pure computation all of whose args are loop-invariant –it’s a variable use with only one reaching def, and the rhs of that def is loop-invariant

Loop invariant detection using SSA An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose single defs are outside of L (inductive cases) –it’s a pure computation all of whose args are loop- invariant –it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant  functions are not pure

Example using SSA An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose single defs are outside of L (inductive cases) –it’s a pure computation all of whose args are loop-invariant –it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant  functions are not pure

Example using SSA and preheader An expression is invariant in a loop L iff: (base cases) –it’s a constant –it’s a variable use, all of whose single defs are outside of L (inductive cases) –it’s a pure computation all of whose args are loop-invariant –it’s a variable use whose single reaching def, and the rhs of that def is loop-invariant  functions are not pure

Summary: Loop-invariant code motion Two steps: analysis and transformations Step1: find invariant computations in loop –invariant: computes same result each time evaluated Step 2: move them outside loop –to top if used within loop: code hoisting –to bottom if used after loop: code sinking

Code motion

Example

Lesson from example: domination restriction

Domination restriction in for loops

Avoiding domination restriction

Another example

Data dependence restriction

Avoiding data restriction

Summary of Data dependencies We’ve seen SSA, a way to encode data dependencies better than just def/use chains –makes CSE easier –makes loop invariant detection easier –makes code motion easier Now we move on to looking at how to encode control dependencies

Control Dependencies A node (basic block) Y is control-dependent on another X iff X determines whether Y executes –there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y –X is not post-dominated by Y

Control Dependencies A node (basic block) Y is control-dependent on another X iff X determines whether Y executes –there exists a path from X to Y s.t. every node in the path other than X and Y is post-dominated by Y –X is not post-dominated by Y

Example

Control Dependence Graph Control dependence graph: Y descendent of X iff Y is control dependent on X –label each child edge with required condition –group all children with same condition under region node Program dependence graph: super-impose dataflow graph (in SSA form or not) on top of the control dependence graph

Example