Ch11.4~11.6 (Ch12.3e) Hankel Functions, Modified Bessel Functions, Asymptotic Expansions 講者: 許永昌 老師.

Slides:



Advertisements
Similar presentations
Professor A G Constantinides 1 Z - transform Defined as power series Examples:
Advertisements

講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.
講者: 許永昌 老師 1. Contents Prefaces Generating function for integral order Integral representation Orthogonality Reference:
講者: 許永昌 老師 1. Contents 2 後面幾章的重點 Action: Law of Conservation of mass ( 請預讀 P239) Purpose: Realize the meaning of “conservation”. Realize the significance.
講者: 許永昌 老師 1. Contents Example: rocket Review of Circular Kinematics Action: the cause of the centripetal acceleration Circular orbits vs. Weightlessness.
講者: 許永昌 老師 1. Contents Definition Other forms Recurrence Relation Wronskian Formulas Example: Coaxial Wave Guides 2.
Ch 5.7: Series Solutions Near a Regular Singular Point, Part II
Evaluation of Definite Integrals Via the Residue Theorem
Analytic Continuation: Let f 1 and f 2 be complex analytic functions defined on D 1 and D 2, respectively, with D 1 contained in D 2. If on D 1, then f.
Ch 5.3: Series Solutions Near an Ordinary Point, Part II
13. Gamma Function 1.Definitions, Properties 2.Digamma & Polygamma Functions 3.The Beta Function 4.Sterling’s Series 5.Riemann Zeta Function 6.Other Related.
講者 : 許永昌 老師 1. Contents Sequences of functions Uniform convergence Weierstrass M test Abel’s test Taylor’s Expansion Remainder Radius of convergence Binomial.
Chapter 5. Series Weiqi Luo (骆伟祺) School of Software
講者: 許永昌 老師 1. Contents Equilibrium Dynamics Mass, weight, gravity, and weightlessness Friction & drag 2.
化工應用數學 授課教師: 郭修伯 Lecture 5 Solution by series (skip) Complex algebra.
講者: 許永昌 老師 1. Contents A Little History Newton’s Law of Gravity Little g and Big G Gravitational Potential Energy Satellite Orbits and Energies 2.
Chapter 6 Bessel functions
講者: 許永昌 老師 1. Contents 2 Why do we need the Dirac Delta function? (Example) For a charge q, it builds an electric field We get  E=0 except at r=0.
講者: 許永昌 老師 1. Contents 2 Turning Heat into Work ( 請預讀 P567) Example: The gas do positive work on the piston. W
講者: 許永昌 老師 1. Contents Developing a Charge Model Charges and Materials Charges Atoms and Electricity Charge Conservation and Charge diagram (P795) Insulators.
講者: 許永昌 老師 1. Contents Green’s function Symmetry of Green’s Function Form of Green’s Functions Expansions: Spherical Polar Coordinate Legendre Polynomial.
講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible.
講者: 許永昌 老師 1. Contents A “Natural Money” called Energy 但是, money 事實上是 “ 無定的 ” 。 Kinetic Energy and Gravitational Potential Energy Elastic Force and Elastic.
講者: 許永昌 老師 1. Contents Geometric representation Vector addition Multiplication by a scalar Coordinate representation Decomposition and components Vector.
Example Ex. For what values of x is the power series convergent?
講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic.
4.Hankel Functions, H (1) (x) & H (2) (x) Hankel functions of the 1 st & 2 nd kind : c.f. for x real For x 0 : 
講者: 許永昌 老師 1. Contents Rigid body Center of mass: r CM Rotational Energy Moment of inertia: I Mathematics: cross product Torque Properties Applications.
講者:許永昌 老師 1. Contents Review of Ch1 Preview of Ch2 Action Exercises (Gotten from R.D. Knight, Instructor Guide) Homework 2.
講者: 許永昌 老師 1. Contents ( 起 )Discovering magnetism Compass needle : a probe of Magnetic field ( 承 )Moving charge is the source of magnetic field ( 轉 )The.
講者: 許永昌 老師 1. Contents Absolute and Conditional Convergence Leibniz criterion (for alternating series) Riemann’s Theorem Convergence Test of conditionally.
講者: 許永昌 老師 1. Contents Singular Pole Essential singularities Branch points Zero and root 2.
講者:許永昌 老師 1. Contents I 2 Contents II 3 Contents III 4.
講者: 許永昌 老師 1. Contents A Short Catalog of Forces Identifying Forces Action I Newton’s 2 nd Law Action II Newton’s 1 st Law Free-Body Diagrams 2.
Ch12.3 & 12.4 (Ch11.3e & 12.4e) Orthogonality, Alternate Definitions of Legendre Polynomials 講者: 許永昌 老師.
講者: 許永昌 老師 1. Contents Models of light: Wave Model Ray Model Photon Model Double-slit interference ( 實驗 7) The diffraction grating Single-Slit diffraction.
Chapter 6. Residues and Poles Weiqi Luo ( 骆伟祺 ) School of Software Sun Yat-Sen University : Office : # A313
Series Solutions of Linear Differential Equations CHAPTER 5.
講者:許永昌 老師 1. Contents Completeness Bessel’s inequality Schwarz Inequality Summary 2.
講者: 許永昌 老師 1. Contents Find the rotational axis of an UCM. Definition Levi-Civita Symbol: p153, Eq Examples Summary 2.
講者: 許永昌 老師 1. Contents Example Projection Axioms: Examples Normal Trajectory Shortest Distance Law of Cosines: C 2 =A 2 +B 2 +2ABcos . 2.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 8 ECE
14. Bessel Functions 1.Bessel Functions of the 1 st Kind, J (x) 2.Orthogonality 3.Neumann Functions, Bessel Functions of the 2 nd Kind 4.Hankel Functions,
13. Gamma Function Definitions, Properties
講者: 許永昌 老師 1. Contents Bernoulli function Euler-Maclaurin Integration Formula Improvement of Convergence Asymptotic Series 2.
Ch. 6.4 Solving Polynomial Equations. Sum and Difference of Cubes.
9.3 Geometric Sequences and Series. Common Ratio In the sequence 2, 10, 50, 250, 1250, ….. Find the common ratio.
Series Solutions of SOLDEs with Regular Singular Points ECE 6382 Notes are from D. R. Wilton, Dept. of ECE David R. Jackson 1.
講者: 許永昌 老師 1. Contents 2 Action I (interacting objects) ( 請預 讀 P183~P185) Purpose: Identify force pairs Actor and Objects: One student. A spring. Two.
The Steepest-Descent Method
講者: 許永昌 老師 1. Contents 2 Line integrals In Riemann integrals ( ), line integrals can be written ashttp://mathworld.wolfram.com/RiemannIntegral.html.
講者:許永昌 老師 1. Contents Preview of this Chapter 2. Basis used in a curved coordinate Distance Integrals Differential vector Operators 2.
講者: 許永昌 老師 1. Contents Preface Guide line of Ch6 and Ch7 Addition and Multiplication Complex Conjugation Functions of a complex variable Example: Electric.
Algebra 2 List all the integer factors for the number below: 36.
講者: 許永昌 老師 1. Contents Find the direction of the maximum change of temperature. Partial Derivative Gradient as a Vector Operator Example p41e (P34) A.
Evaluation of Definite Integrals via the Residue Theorem
Sect.1.5 continued Infinite Limits
Ch18 The Micro/Macro Connection
The Steepest-Descent Method
8-6 Solving Quadratic Equations using Factoring
Notes are from D. R. Wilton, Dept. of ECE
Ch 5.1 Fundamental Concepts of Infinite Series
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 8.
3. Neumann Functions, Bessel Functions of the 2nd Kind
Ch1.4e (Ch1.5) Triple Scalar Product and Triple Vector Product
1. Complex Variables & Functions
Algebra 1 Section 12.5.
5. Asymptotic Expansions
14. Bessel Functions Bessel Functions of the 1st Kind, J (x)
Intercepts of a Line Intercepts are the points at which the graph intersects the x-axis or the y-axis. Since an intercept intersects the x-axis or the.
Presentation transcript:

Ch11.4~11.6 (Ch12.3e) Hankel Functions, Modified Bessel Functions, Asymptotic Expansions 講者: 許永昌 老師

Contents Contour Integral Representation of the Hankel Functions Steepest descents  Asymptotic series Modified Bessel function

Contour Integral Representation of the Hankel Functions (請預讀P707~P710) Since g(x,t) will have essential singularities at t=0, . Residue theorem? It is worked for n is an integer number case; otherwise, it will have a branch point at t=0. Derived by yourself:

Contour Integral Representation of the Hankel Functions (continue) You will find both t=0+ and t=- will let fg=0 Re{x}>0. Bessel Jn : Check:

Contour Integral Representation of the Hankel Functions (continue)

Contour Integral Representation of the Hankel Functions (continue) Prove that Prove that at first. Use these equations to find out J-n(x). Finally, we get the formula of Nn shown in Ch11.3.

Asymptotic series of the Hankel Functions (請預讀P719~P723,此page只大略講) When z and Re{t-1/t}<0, Exp(z/2[t-1/t])0 i.e. (|t|-1/|t|)cos(ang(t)) <0 The main contribution is at the saddle point i. Steepest descent:  

Modified Bessel Functions, In & Kn (請預讀P713~P716,另一本無) Helmholtz eq. : [2+k2]y=0 Bessel eq. : x2y’’+xy’+[x2-n2]y=0 ----(1) Modified Helmholtz eq. : [2-k2]y=0 Modified Bessel eq. : x2y’’+xy’-[x2+n2]y=0 ----(2) Eq. (2) can be transformed from Eq. (1) by the transformation x ix. In(x)i-nJn(ix)=e-inp/2Jn(xeip/2). [i-n is used to make sure In(x) if x]. Kn(x)p/2 in+1H(1)n(ix). [in+1 is used to make sure Kn(x) if x. Besides, it will tend to zero when x.]

Homework 11.6.3(a~c) (12.3.2e) 11.6.5 (12.3.3e) 11.4.7