Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy.

Slides:



Advertisements
Similar presentations
Quark structure of the Pentaquark(?) Jo Dudek, Jefferson Lab.
Advertisements

Soliton spectroscopy, baryonic antidecuplet
Lattice study for penta-quark states
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
August 2005Michal Praszalowicz, Krakow1 quarks Michal Praszalowicz Jagellonian University Krakow, Poland at ISMD
PHYS 745G Presentation Symmetries & Quarks
29 June 2004Steve Armstrong - Searches for Pentaquark Production at LEP1 Searches for Pentaquark Production at LEP Steve Armstrong (ALEPH Collaboration)
Successes and problems of chiral soliton approach to exotic baryons
Istanbul06 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Hadron spectroscopy, Heavy pentaquark, and.
Rencontres de Moriond 2005 Chiral soliton model predictions for pentaquarks Rencontres de Moriond 2005 Michał Praszałowicz - Jagellonian University Kraków,
Strange Pentaquarks Michał Praszałowicz
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
Structure of strange baryons Alfons Buchmann University of Tuebingen 1.Introduction 2.SU(6) spin-flavor symmetry 3.Observables 4.Results 5.Summary Hyperon.
Eightfold Way (old model)
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Sevil Salur for STAR Collaboration, Yale University WHAT IS A PENTAQUARK? STAR at RHIC, BNL measures charged particles via Time Projection Chamber. Due.
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
HEP Quark Model Kihyeon Cho. Contents Quarks Mesons Baryon Baryon Magnetic Moments HEP Journal Club.
Ordinary and exotic baryons, strange and charmed, in the relativistic mean field approach Dmitri Diakonov Petersburg Nuclear Physics Institute Kolomna,
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Munich, June 16th, 2010Exotic gifts of nature1 XIV International Conference on Hadron Spectroscopy J. Vijande University of Valencia (Spain) A. Valcarce,
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
HIM SHLee 1 1.Introduction for Exotics 2.Hadron production in HIC 3.Exotics from RHIC Hadron Physics at RHIC Su Houng Lee Yonsei Univ., Korea Thanks.
Workshop on “Extractions and interpretations of hadron resonances and multi-meson production reactions with 12 GeV upgrade”, May 27-28, 2010 Cascade Baryons:
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Quark Nuclear Physics and Exotic Pentaquark as a Gamov-Teller Resonance Dmitri Diakonov Petersburg Nuclear Physics Institute QNP-09, Beijing Sep 24, 2009.
Ordinary and exotic baryons, strange and charmed, in the relativistic mean field approach Dmitri Diakonov Petersburg Nuclear Physics Institute Kyoto, Feb.
S-Y-05 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Physics of Pentaquarks Su Houng Lee Yonsei Univ.,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
4-quark operator contributions to neutron electric dipole moment Haipeng An, University of Maryland; PHENO 2009 In collaboration with Xiangdong Ji, Fanrong.
Exotic baryons: discoveries and new perspectives Bochum, Jan 22, 2004 Maxim V. Polyakov Liege University Outline: - hadron families and quarks - prediction.
1 Keitaro Nagata, Chung-Yuan Christian University Atsushi Hosaka, RCNP, Osaka Univ. Structure of the nucleon and Roper Resonance with Diquark Correlations.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Ghil-Seok Yang, Hyun-Chul Kim NTG (Nuclear Theory Group), Inha University, Inha University, Incheon, Korea G. S. Yang, H.-Ch. Kim, [arXiv:hep-ph/ ,
Pentaquarks: Discovering new particles
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
Outline: - hadron families and quarks - prediction of pentaquarks - evidencies (2003) - QCD and chiral solitons - postdictions - implications.
Quark Nuclear Physics or A theory of baryon resonances at large N c Dmitri Diakonov, Victor Petrov and Alexey Vladimirov Petersburg Nuclear Physics Institute,
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Strange Tribaryons as Nona-quarks Yuu Maezawa (Univ. Tokyo) Tetsuo Hatsuda (Univ. Tokyo) Shoichi Sasaki (RIKEN BNL) hep-ph/
U-spin and the Radiative decay of Strange Baryons K. Hicks and D.Keller EM Transition Form Factor Workshop October 13, 2008.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Exotic baryons: predictions, postdictions and implications Hanoi, August 8 Maxim V. Polyakov Petersburg NPI & Liege University Outline: - predictions.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Lattice College of William and Mary
On a possibility of baryonic exotica
Search for exotic baryon resonances in pp collisions at the CERN SPS
Structure of Mass Gap Between Two Spin Multiplets
A novel probe of Chiral restoration in nuclear medium
Lecture 4b quarks.
Lecture 04 - Hadrons Quarks multiplets Hadron decays Resonances
Current Status of Pentaquark States
Experimental Status of Pentaquark States
Section IX - Quark Model of Hadrons
d*, a quark model perspective
Dmitri Diakonov Petersburg Nuclear Physics Institute
s, pentaquarks or excited heavy baryons, or both?
Understanding DsJ*(2317) and DsJ(2460)
5-quark states in a chiral potential Atsushi Hosaka (RCNP)
Remarks on mass difference between the charged and neutral K*(892)
Presentation transcript:

Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy Physics), Kyungpook Nat‘l University Kyungpook Nat‘l University

Prehistory of SU(3) Baryons Prehistory of SU(3) Baryons Motivation (Θ +, N *) Motivation (Θ +, N *) Chiral Soliton Model Chiral Soliton Model Masses and Decay Width Masses and Decay Width Summary Summary

Naïve Quark Model Naïve Quark Model (up, down, strange light quarks): SU(3) scheme to classify particles with the same spin and parity Fundamental Particles ? SU(2) SU(3) multiplets (proton, neutron) : isospin [ SU(2) ] → higher symmetry (Σ, K,···) : SU(3) Hadron [ baryon (qqq), meson (qq) ] : SU(3) color singlet Why not 4, 5, 6, … quark states ? representation 10* (10) Nothing prevents such states to exist Y. s. Oh and H. c. Kim, Phys. Rev. D 70, (2004)

Θ , Diakonov, Petrov, and Polyakov : Narrow 5-quark resonance (q 4 q : Θ + ) ( M = 1530, Γ ~ 15 MeV from Chiral Soliton Model ) ( uddss ) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+3/2 Ξ0Ξ0Ξ0Ξ03/2 Ξ-Ξ-Ξ-Ξ-3/2 Ξ --3/2 Σ-Σ-Σ-Σ-10 Σ0Σ0Σ0Σ010 Σ+Σ+Σ+Σ+10 ( uudss ) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10) S = -1 S = -2

Successful searches for Θ + (2003~2005) : 2007 PDG Successful searches for Θ + (2003~2005) : 2007 PDG

Unsuccessful searches for Θ + (2006~2008) : 2010 PDG Unsuccessful searches for Θ + (2006~2008) : 2010 PDG ??? ?

Experimental Status Experimental Status New positive experiments ( ) Θ + ■ DIANA 2010 ( Θ + ) : M = 1538±2, Γ= 0.39±0.10 MeV (K + n → K 0 p, higher statistical significance : 6σ - 8σ) LEPS, SVD, KEK [Signals are confirmed by LEPS, SVD, KEK, …] ■ GRAAL (N* ) : M = 1685±0.012 MeV, CBELSA/TAPS, LNS-Sendai ( CBELSA/TAPS, LNS-Sendai, …) (uddss) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+ 3/2 Ξ0Ξ0Ξ0Ξ0 3/2 Ξ-Ξ-Ξ-Ξ- 3/2 Ξ -- 3/2 Σ-Σ-Σ-Σ- 10 Σ0Σ0Σ0Σ0 10 Σ+Σ+Σ+Σ+ 10 (uudss) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10) Various experimental data for Θ + and Various experimental data for Θ + and N* Mass of Θ + : 1525 – 1565 MeV ■ Mass of Θ + : 1525 – 1565 MeV Mass of : 1665 – 1695 MeV ■ Mass of N* : 1665 – 1695 MeV

: Effective and relativistic low energy theory : Large N c limit : meson field → soliton : Quantizing SU(3) rotated-meson fields → Collective Hamiltonian, model baryon states Chiral Soliton Model Hedgehog Ansatz : Collective quantization SU(2) Witten imbedding into SU(3): SU(2) X U(1)

Model baryon state Constraint for the collective quantization : Mixings of baryon states

Mixing coefficients

Octet (8) Octet (8) : J p = 1/2 + Decuplet Decuplet (10) : J p = 3/2 + Y T3T3 Y Y T3T3 1 N NN N Ξ ΞΞ Ξ Λ Σ0Σ0Σ0Σ Δ ΔΔ Δ Σ*Σ*Σ*Σ* Ξ*Ξ*Ξ*Ξ* Ω-Ω-Ω-Ω- -½ ½ Mass -½½ -3/ Mass SU(3) flavor symmetry breaking Collective Hamiltonian for flavor symmetry breakings

Two advantages offered by the model-independent approach in the χSM by the model-independent approach in the χSM. model-parameters 1. the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons, namely octet, decuplet, antidecuplet, and so on. model-parameters 2. these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions. Mass : α, β, γ (for ) Mass : α, β, γ (for octet, decuplet, antidecuplet,…) Vector transitions : w i (i=1,2,…,6) Axial transitions : a i (i=1,2,…,6) [10], [10] Baryons l = l 0 (1 + c ΔT) : linear expansion coefficient of a wire, c [8] model-parameters

D.P.PE.K.PχQSM Considered Effects H SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Σ πN [MeV] 4573Predicted → 41 Results I 2 [ fm ] m s α [MeV] m s β [MeV] m s γ [MeV] c Γ Θ+ [MeV] 15 for sym11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, & Nucl. Phys. A Problems in the previous solitonic approaches Problems in the previous solitonic approaches

Octet (8) Octet (8) : J p = 1/2 + Decuplet Decuplet (10) : J p = 3/2 + Y T3T3 Y Y T3T3 1 N NN N Ξ ΞΞ Ξ Λ Σ0Σ0Σ0Σ Δ ΔΔ Δ Σ*Σ*Σ*Σ* Ξ*Ξ*Ξ*Ξ* Ω-Ω-Ω-Ω- n ( udd ) n p p ( uud ) Ξ - ( dss)Ξ - Ξ 0 Ξ 0 ( uss ) Σ-Σ-Σ-Σ- Σ+Σ+Σ+Σ+ Λ Σ0Σ0Σ0Σ0 -½ ½ Mass Δ - ( ddd )Δ - Δ ++ Δ ++ ( uuu ) Δ0Δ0Δ0Δ0 Δ+Δ+Δ+Δ+ Ω - Ω - ( sss ) Ξ*-Ξ*-Ξ*-Ξ*- Ξ*0Ξ*0Ξ*0Ξ*0 Σ*-Σ*-Σ*-Σ*- Σ*0Σ*0Σ*0Σ*0 Σ*+Σ*+Σ*+Σ*+ -½½ -3/ Mass SU(3) flavor symmetry breaking + Isospin symmetry breaking Collective Hamiltonian for flavor symmetry breakings +

D.P.PE.K.PχQSM Considered Effects H SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Σ πN [MeV] 4573Predicted → 41 Results I 2 [ fm ] m s α [MeV] m s β [MeV] m s γ [MeV] c Γ Θ+ [MeV] 15 for sym11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, & Nucl. Phys. A Problems in the previous solitonic approaches Problems in the previous solitonic approaches In order to determine the values of model parameters, “Model-independent approach” needs more information (at least, 2 inputs for antidecuplet baryons).

Mass splittings within a Chiral Soliton Model Mass splittings within a Chiral Soliton Model Formulae for Baryon Octet Masses hadronic mass part in terms of δ 1 and δ 2

Formulae for Baryon Decuplet Masses hadronic mass part in terms of δ 1 and δ 2

Formulae for Baryon Anti-Decuplet Masses hadronic mass part in terms of δ 3

D.P.PE.K.PχQSM Considered Effects H SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Σ πN [MeV] 4573Predicted → 41 Results I 2 [ fm ] m s α [MeV] m s β [MeV] m s γ [MeV] c Γ Θ+ [MeV] 15 for sym11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, & Nucl. Phys. A Problems in the previous solitonic approaches Problems in the previous solitonic approaches

★ In order to take fully into account the masses of the baryon octet as input, it is inevitable to consider the breakdown of isospin symmetry. ★ Two sources for the isospin symmetry breaking 1. mass differences of up and down quarks (hadronic part) 2.Electromagnetic interactions (EM part)

Δ M B = M B 1 – M B 2 = ( Δ M B ) H + ( Δ M B ) EM B(p) k p p p - k EM mass corrections Electromagnetic (EM ) self-energy EM [MeV]Exp. (p – n) EM 0.76±0.30 ΣΣ (Σ + – Σ - ) EM -0.17±0.30 ΞΞ (Ξ 0 –Ξ - ) EM -0.86±0.30 ( p – n ) exp ~ – MeV ( p – n ) EM ~0.76 MeV n ( udd ) n p p ( uud ) T3T3 Ξ - ( dss)Ξ - Ξ 0 Ξ 0 ( uss ) Σ-Σ-Σ-Σ- Σ+Σ+Σ+Σ+ Λ Σ0Σ0Σ0Σ0 -½ 1 ½ 1 Y Gasser, Leutwyler, Phys.Rep 87, 77 “Quark Masses”

In the ChSM, It can be further reduced to Because of Bose symmetry G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011)

Weinberg-Treiman formula M EM (T 3 ) = αT βT 3 + γ Dashen ansatz ΔM EM ~ κT 3 2 ~ κ’Q 2

Coleman-Glashow Coleman-Glashow relation EM [MeV] Exp. Exp. [input] (M p – M n ) EM0.76±0.30 (M Σ+ – M Σ - ) EM-0.17±0.30 (M Ξ 0 –M Ξ - ) EM-0.86±0.30

EM [MeV] Exp. Exp. [input]reproduced (M p – M n ) EM0.76± ±0.22 (M Σ+ – M Σ - ) EM-0.17± ±0.23 (M Ξ 0 –M Ξ - ) EM-0.86± ±0.28 Coleman-Glashow Coleman-Glashow relation Χ 2 fit

[ D.W.Thomas et al.] [ PDG, 2010 ] [ GW, 2006 ] [ Gatchina, 1981 ] Physical mass differences of baryon decuplet ■ Physical mass differences of baryon decuplet

Mass splittings within a Chiral Soliton Model Mass splittings within a Chiral Soliton Model Formulae for Baryon Octet Masses (ΔM) EM (ΔM) H hadronic mass part in terms of δ 1 and δ 2 G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011)

D.P.PE.K.PχQSM This Work Considered Effects H SU(3) H. EMHH EM + iso H. + SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Θ + Θ + : MeV Σ πN [MeV] 4573Predicted → 41 Result s I 2 [ fm ] m s α [MeV] m s β [MeV] m s γ [MeV] c Γ Θ+ [MeV] 15 for sym 11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, & Nucl. Phys. A Problems in the previous solitonic approaches Problems in the previous solitonic approaches (uddss) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+ 3/2 Ξ0Ξ0Ξ0Ξ0 3/2 Ξ-Ξ-Ξ-Ξ- 3/2 Ξ -- 3/2 Σ-Σ-Σ-Σ- 10 Σ0Σ0Σ0Σ0 10 Σ+Σ+Σ+Σ+ 10 (uudss) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10) Various experimental data for Θ + and Various experimental data for Θ + and N* Mass of Θ + : 1525 – 1565 MeV ■ Mass of Θ + : 1525 – 1565 MeV Mass of : 1665 – 1695 MeV ■ Mass of N* : 1665 – 1695 MeV

Axial-vector transitions with The full expression for the axial-vector transitions g 1 BB’ = g 1 BB’ (0) + g 1 BB’ (op) + g 1 BB’ (wf)

Axial-vector transitions 0.36±0.08

Baryon octet masses

Baryon decuplet masses

Various experimental data for Θ + and Various experimental data for Θ + and N* Mass of Θ + : 1525 – 1565 MeV ■ Mass of Θ + : 1525 – 1565 MeV Mass of : 1665 – 1695 MeV ■ Mass of N* : 1665 – 1695 MeV DIANALEPS

Ξ -- 3/2 = 1862 MeV NA49 : Mass of Ξ -- 3/2 = 1862 MeV

DIANALEPS GRAAL,SAID MAMI

DIANA LEPSDIANA?

Chiral Soliton Model Chiral Soliton Model : “model-independent approach” ● Mass splittings : SU(3) and isospin symmetry breakings with EM in the range of M Θ+ = MeV used as input ● Masses of octet and decuplet are not sensitive to the M Θ+ input. → very good agreement with experimental data pion-nucleon sigma term ● Small value of pion-nucleon sigma term is estimated. (Σ πN = MeV) ● M Θ+ = 1524 MeV [LEPS], M N* = 1685 MeV [GRAAL], Γ Θ+ = 0.38±0.11 MeV [DIANA] : reliable values within a chiral soliton model.

Спасибо Thank you ありがとうございます 감사합니다 Danke schön 謝謝 TERIMA KASIH