Remote sensing in meteorology

Slides:



Advertisements
Similar presentations
Remote Sensing. Readings: and lecture notes Figures to Examine: to Examine the Image from IKONOS, and compare it with the others.
Advertisements

Electro-magnetic radiation
Aerial Photography Aerial platforms are primarily stable wing aircraft. Aircraft are often used to collect very detailed images and facilitate the collection.
Spectral Reflectance Curves
Resolution Resolving power Measuring of the ability of a sensor to distinguish between signals that are spatially near or spectrally similar.
Some Basic Concepts of Remote Sensing
Resolution.
Thermal Infrared Remote Sensing Radiant versus Kinetic temperature Blackbody radiation Atmospheric effect Principle of energy conservation Radiation from.
Landsat-based thermal change of Nisyros Island (volcanic)
Radiometric and Geometric Errors
Orbits and Sensors Multispectral Sensors
Line scanners Chapter 6. Frame capture systems collect an image of a scene of one instant in time The scanner records a narrow swath perpendicular to.
Lecture 6 Multispectral Remote Sensing Systems. Overview Overview.
Lesson 7: Remote Sensing Dr Andrew Ketsdever MAE 5595.
Sonar Chapter 9. History Sound Navigation And Ranging (SONAR) developed during WW II –Sound pulses emitted reflected off metal objects with characteristic.
Hyperspectral Imagery
Satellites and instruments How RS works. This section More reflection Sensors / instruments and how they work.
Lecture 2 Photographs and digital mages Friday, 7 January 2011 Reading assignment: Ch 1.5 data acquisition & interpretation Ch 2.1, 2.5 digital imaging.
Meteorological satellites – National Oceanographic and Atmospheric Administration (NOAA)-Polar Orbiting Environmental Satellite (POES) Orbital characteristics.
Integration of sensors for photogrammetry and remote sensing 8 th semester, MS 2005.
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute.
Remote Sensing II Introduction. Scientists formulate hypotheses and then attempt to accept or reject them in a systematic, unbiased fashion. The data.
Improving Uncertainties of Non-Contact Thermometry Measurements Mark Finch Fluke Calibration.
Introduction to Digital Data and Imagery
Remote Sensing 2012 SUMMER INSTITUTE. Presented by: Mark A. Van Hecke National Science Olympiad Earth-Space Science Event Chair Roy Highberg North Carolina.
1 Image Pre-Processing. 2 Digital Image Processing The process of extracting information from digital images obtained from satellites Information regarding.
Geography 1010 Remote Sensing. Outline Last Lecture –Electromagnetic energy. –Spectral Signatures. Today’s Lecture –Spectral Signatures. –Satellite Remote.
Satellite Imagery and Remote Sensing NC Climate Fellows June 2012 DeeDee Whitaker SW Guilford High Earth/Environmental Science & Chemistry.
Remote Sensing Theory & Background GEOG370 Instructor: Christine Erlien.
Remote Sensing Microwave Remote Sensing. 1. Passive Microwave Sensors ► Microwave emission is related to temperature and emissivity ► Microwave radiometers.
Introduction to Remote Sensing. Outline What is remote sensing? The electromagnetic spectrum (EMS) The four resolutions Image Classification Incorporation.
1 Remote Sensing and Image Processing: 7 Dr. Mathias (Mat) Disney UCL Geography Office: 301, 3rd Floor, Chandler House Tel: (x24290)
Spectral Characteristics
Basics of Remote Sensing & Electromagnetic Radiation Concepts.
Dr. Garver GEO 420 Sensors. So far we have discussed the nature and properties of electromagnetic radiation Sensors - gather and process information detect.
Resolution A sensor's various resolutions are very important characteristics. These resolution categories include: spatial spectral temporal radiometric.
Resolution Resolution. Landsat ETM+ image Learning Objectives Be able to name and define the four types of data resolution. Be able to calculate the.
Chapter 5 Remote Sensing Crop Science 6 Fall 2004 October 22, 2004.
West Hills College Farm of the Future. West Hills College Farm of the Future Precision Agriculture – Lesson 4 Remote Sensing A group of techniques for.
Remote Sensing and Image Processing: 7 Dr. Hassan J. Eghbali.
Support the spread of “good practice” in generating, managing, analysing and communicating spatial information Introduction to Remote Sensing Images By:
Introduction to the Principles of Aerial Photography
SATELLITE METEOROLOGY BASICS satellite orbits EM spectrum
Chapter 8 Remote Sensing & GIS Integration. Basics EM spectrum: fig p. 268 reflected emitted detection film sensor atmospheric attenuation.
Remote Sensing SPOT and Other Moderate Resolution Satellite Systems
CHARACTERISTICS OF OPTICAL SENSORS Course: Introduction to RS & DIP Mirza Muhammad Waqar Contact: EXT:2257 RG610.
Hyperspectral remote sensing
Applying Pixel Values to Digital Images
Data Models, Pixels, and Satellite Bands. Understand the differences between raster and vector data. What are digital numbers (DNs) and what do they.
Lecture 6 Multispectral Remote Sensing Systems. Overview Overview.
Active Remote Sensing for Elevation Mapping
Infrared IR Sensor Circuit Diagram and Working Principle.
SCM x330 Ocean Discovery through Technology Area F GE.
Electro-optical systems Sensor Resolution
Remote sensing: the collection of information about an object without being in direct physical contact with the object. the collection of information about.
UNIT 2 – MODULE 5: Multispectral, Thermal & Hyperspectral Sensing
Orbits and Sensors Multispectral Sensors. Satellite Orbits Orbital parameters can be tuned to produce particular, useful orbits Geostationary Sun synchronous.
Passive Microwave Remote Sensing
REMOTE SENSING Characteristics of Sensor Systems
Sensors Dr. Garver GEO 420.
Basic Concepts of Remote Sensing
GEOGRAPHIC INFORMATION SYSTEMS & RS INTERVIEW QUESTIONS ANSWERS
Landsat-based thermal change of Nisyros Island (volcanic)
ERT 247 SENSOR & PLATFORM.
Lecture 2 Photographs and digital mages
Introduction and Basic Concepts
REMOTE SENSING.
REMOTE SENSING.
Remote sensing in meteorology
Presentation transcript:

Remote sensing in meteorology Multispectral scanning and thermal imaging of satellite Murat ilhan 110020216

Multispectral Scanning Many electronic remote sensors acquire data using scanning systems, which employ a sensor with a narrow field of view (i.e. IFOV) that sweeps over the terrain to build up and produce a two-dimensional image of the surface. Scanning systems can be used on both aircraft and satellite platforms and have essentially the same operating principles. A scanning system used to collect data over a variety of different wavelength ranges is called a multispectral scanner (MSS), and is the most commonly used scanning system. There are two main modes or methods of scanning employed to acquire multispectral image data - across-track scanning, and along-track scanning

Across-track scanners Across-track scanners scan the Earth in a series of lines. The lines are oriented perpendicular to the direction of motion of the sensor platform. Each line is scanned from one side of the sensor to the other, using a rotating mirror (A). As the platform moves forward over the Earth, successive scans build up a two-dimensional image of the Earth´s surface.

The incoming reflected or emitted radiation is separated into several spectral components that are detected independently. The UV, visible, near-infrared, and thermal radiation are dispersed into their constituent wavelengths. A bank of internal detectors (B), each sensitive to a specific range of wavelengths, detects and measures the energy for each spectral band and then, as an electrical signal, they are converted to digital data and recorded for subsequent computer processing

The IFOV (C) of the sensor and the altitude of the platform determine the ground resolution cell viewed (D), and thus the spatial resolution. The angular field of view (E) is the sweep of the mirror, measured in degrees, used to record a scan line, and determines the width of the imaged swath (F). Airborne scanners typically sweep large angles (between 90º and 120º), while satellites, because of their higher altitude need only to sweep fairly small angles (10-20º) to cover a broad region. Because the distance from the sensor to the target increases towards the edges of the swath, the ground resolution cells also become larger and introduce geometric distortions to the images. Also, the length of time the IFOV "sees" a ground resolution cell as the rotating mirror scans (called the dwell time), is generally quite short and influences the design of the spatial, spectral, and radiometric resolution of the sensor.

Along-track scanners Along-track scanners also use the forward motion of the platform to record successive scan lines and build up a two-dimensional image, perpendicular to the flight direction. However, instead of a scanning mirror, they use a linear array of detectors (A) located at the focal plane of the image (B) formed by lens systems (C), which are "pushed" along in the flight track direction

Pushbroom scanners These systems are also referred to as pushbroom scanners, as the motion of the detector array is analogous to the bristles of a broom being pushed along a floor. Each individual detector measures the energy for a single ground resolution cell (D) and thus the size and IFOV of the detectors determines the spatial resolution of the system. A separate linear array is required to measure each spectral band or channel. For each scan line, the energy detected by each detector of each linear array is sampled electronically and digitally recorded

Advantages of Along-track scanners measure the energy from each ground resolution cell for a longer period of time more energy to be detected and improves the radiometric resolution smaller IFOVs and narrower bandwidths for each detector cross-calibrating thousands of detectors to achieve uniform sensitivity across the array is necessary and complicat

Thermal Imaging Many multispectral (MSS) systems sense radiation in the thermal infrared as well as the visible and reflected infrared portions of the spectrum. However, remote sensing of energy emitted from the Earth's surface in the thermal infrared (3 μm to 15 μm) is different than the sensing of reflected energy. Thermal sensors use photo detectors sensitive to the direct contact of photons on their surface, to detect emitted thermal radiation. The detectors are cooled to temperatures close to absolute zero in order to limit their own thermal emissions. Thermal sensors essentially measure the surface temperature and thermal properties of targets.

Thermal imagers Thermal imagers are typically across-track scanners (like those described in the previous section) that detect emitted radiation in only the thermal portion of the spectrum. Thermal sensors employ one or more internal temperature references for comparison with the detected radiation, so they can be related to absolute radiant temperature The data are generally recorded on film and/or magnetic tape and the temperature resolution of current sensors can reach 0.1 °C.

For analysis, an image of relative radiant temperatures (a thermogram) is depicted in grey levels, with warmer temperatures shown in light tones, and cooler temperatures in dark tones. Imagery which portrays relative temperature differences in their relative spatial locations are sufficient for most applications. Absolute temperature measurements may be calculated but require accurate calibration and measurement of the temperature references and detailed knowledge of the thermal properties of the target, geometric distortions, and radiometric effects

Because of the relatively long wavelength of thermal radiation (compared to visible radiation), atmospheric scattering is minimal. However, absorption by atmospheric gases normally restricts thermal sensing to two specific regions - 3 to 5 μm and 8 to 14 μm. Because energy decreases as the wavelength increases, thermal sensors generally have large IFOVs to ensure that enough energy reaches the detector in order to make a reliable measurement. Therefore the spatial resolution of thermal sensors is usually fairly coarse, relative to the spatial resolution possible in the visible and reflected infrared. Thermal imagery can be acquired during the day or night (because the radiation is emitted not reflected) and is used for a variety of applications such as military reconnaissance, disaster management (forest fire mapping), and heat loss monitoring.