Hazardous Location Standards and the CEC

Slides:



Advertisements
Similar presentations
Regulations (Standards - 29 CFR) Flammable and Combustible liquids
Advertisements

(Adapted from:D.T. Hall:Practical Marine Electrical Knowledge)
Electrical Safety.
September 9, Electrical Safety Division Testing and Evaluation of Electrical Equipment Independent Laboratory Part 6 Workshop.
A PPARATUS G AS G ROUPS, T EMPERATURE C LASS AND T YPES OF E XPLOSION P ROTECTION (Adapted from:D.T. Hall:Practical Marine Electrical Knowledge)
VSD AND SS DRIVING ATEX MOTORS February Introduction to ATEX 2 ATEX motor designation 3 VSD Sample Solutions 4 SS descriptions.
(Adapted from:D.T. Hall:Practical Marine Electrical Knowledge)
Section 2 Safety, Tools and Equipment, Shop Practices Unit 4 General Safety Practices.
Flexible Manufacturing Welding Safety Copyright © Texas Education Agency, All rights reserved. 1.
Explosion Proof Cameras What is Explosion Proof (EX)? Electric Powered Industrial Equipment, used in areas containing explosive or flammable materials,
Intrinsic Safety Testing by Gail Nicola, Electrical Engineering Technician Ed Vensko, Electrical Engineering Technician.
1 Module 3 Ignition Control. 2 Terminal Objectives Upon the successful completion of this module, participants will be able to explain the work procedures.
Fires and Explosions.
Welding, Cutting, And Brazing
Work In Confined Spaces
The Association of Electrical Equipment and Medical Imaging Manufacturers ENCLOSURE TYPES Environmental Conditions : and the Appropriate:
Air Monitoring Presented By: Etech Environmental & Safety Solutions, Inc.
Welding, Cutting and Brazing 29 CFR 1910, Subpart Q
Safe Handling of Flammable and Combustible Liquids
Copyright  Business & Legal Reports, Inc. BLR’s Safety Training Presentations Welding, Cutting and Brazing 29 CFR 1910, Subpart Q.
Liquid Fuel Safety Cummins Southern Plains, Ltd..
CNG STATION & GARAGE MODIFICATION CODES & STANDARDS Graham Barker Business Development Manager.
Blabo® Automated Tank Cleaning ExxonMobil 2009 Article Electrical standards Designed for operation in hazardous areas. Constructed for zone 1, and some.
Copyright © Flammable & Combustible Liquids.
SITE SAFETY HAZARDS AND PROCEDURES. ELECTRICAL HAZARDS  Electricity is a serious workplace hazard.  Employees can be exposed to dangers such as : 
Patrick Thornton, SNS/FPE June 9, 2008
Illumination for Industrial Painting Projects Presented by: William Hansel, Caltrans.
Chapter One Electrical Design and Component Basics.
Flammable and Combustible Liquids
NFPA 31 Standard for the installation of Oil- Burning Equipment
Flammable and Combustible Liquids Presented by Martina Schmeling Adapted From OSHA.
© BA Electrical Machines - 1 M3000 Ex-motors August 2002 M3000 Low Voltage Motors for Hazardous Areas.
Electrical Safety in Construction. Objectives In this course, we will discuss the following: Common electrical hazards Standards relating to those hazards.
Air Conditioning International Mechanical Code
Basic Awareness Training for all Staff
Flammable and Combustible Liquids. Introduction !The two primary hazards associated with flammable and combustible liquids are explosion and fire !Safe.
Unit 4: General Safety Practices
The work of CEN/TC 305 Potentially explosive atmospheres-
2 IMPACT - THE FIRE PERMIT = Hot Work Permit 3 Welcome ! This course is linked to the use of IMPACT, so it is assumed that: You know how to use IMPACT.
Selection of Explosion Protected Equipment for Hazardous Locations
What is a safe work permit? A safe work permit is a written record that authorizes specific work, at a specific work location, for a specific.
NFPA 2 Overview Susan Bershad, Staff Liaison, NFPA.
FLAMMABLE AND COMBUSTIBLE LIQUIDS 1 Bureau of Workers’ Comp PA Training for Health & Safety (PATHS) OSHA 29CFR PPT
HEAT-GENERATING EQUIPMENT INTRODUCTION SELECTION EFFICIENCY FURNACES BOILERS CENTRAL HVAC SYSTEMS.
Flammable Liquids Directorate of Training and Education
Standards Certification Education & Training Publishing Conferences & Exhibits ISA SP12 Standards Related to Equipment in Hazardous Locations.
1 ATEX classification air motors, Dagmar Dübbelde ATEX CLASSIFICATION AIR MOTORS.
Hazardous Area Classification 1. Hazard & Its Causes/ Types 2. Hazardous Area Definitions 3. Material Classification 4. Area Classification 5. Prevention.
NONINCENDIVE INSTALLATIONS FOR CLASS I DIV 2 AREAS
Welding, Cutting and Brazing
Safe Handling of Flammable and Combustible Liquids
Hazardous Area Environments
General Safety Practices
U.S. participation in IECEx Scheme
Ron Sinclair Managing Director – Baseefa
Fire Safety and Prevention Plan
THUM Adapter Impact on Hazardous Area Classification
ATEX fans st ATEX.
Flammable and Combustible Liquids
Fire protection and prevention
CONSTRUCTION BS (BS 4533) K.F. Chan (Mr.) MEBS 6002.
Fire Prevention Safety Department
Electrical Safety Standards
Developing Standards and Linkage to IECEx
Flammable & Combustible Liquids
Safe Handling of Flammable and Combustible Liquids
HAZOP Guidewords Base Set
Hazardous Area Classification
Parker domnick hunter. Safety of Electrical and
Two Minute Drill – Residential 3
Presentation transcript:

Hazardous Location Standards and the CEC Sunday, April 16, 2017

Hazardous Location Standards and the CEC Two Types Division Based Original C22.2 IEC Based E79 CAN/CSA C22.2

Division Based Hazardous Location Standards C22.2 No. 22 Electrical Equipment for Flammable and Combustible Fuel Dispensers C22.2 No. 25 Enclosures for Use in Class II Groups E, F, and G Hazardous Locations C22.2 No. 30 Explosion-Proof Enclosures for Use in Class I Hazardous Locations C22.2 No. 137 Electric Luminaires for Use in Hazardous Locations C22.2 No. 145 Motors and Generators for Use in Hazardous Locations C22.2 No. 152 Combustible Gas Detection Instruments C22.2 No. 157 Intrinsically Safe and Non-Incendive Equipment for Use in Hazardous Locations C22.2 No. 159 Attachment Plugs, Receptacles, and Similar Wiring Devices for Use in Hazardous Locations: Class I, Groups A, B, C, and D; Class II, Group G, in Coal or Coke Dust, and in Gaseous Mines C22.2 No. 174 Cables and Cable Glands for Use in Hazardous Locations C22.2 No. 213 Non-incendive Electrical Equipment for Use in Class I, Division 2 Hazardous Locations

CSA Adopted IEC Standards CSA Version IEC Version CAN/CSA-C22.2 No. 60079-0-07 IEC 60079-0 ed6.0 (2011-06) CAN/CSA-C22.2 No. 60079-1-07 IEC 60079-1 ed6.0 (2007-04) CAN/CSA-E60079-2-02 (R2011) IEC 60079-2 ed5.0 (2007-02) CAN/CSA-E60079-5-02 (R2011) IEC 60079-5 ed3.0 (2007-03) CAN/CSA-E60079-6-02 (R2011) IEC 60079-6 ed3.0 (2007-03) CAN/CSA-E60079-7-03 (R2008) IEC 60079-7 ed4.0 (2006-07) CAN/CSA-E60079-11-02 (R2011) IEC 60079-11 ed6.0 (2011-07) CAN/CSA-E60079-15-02 (R2011) IEC 60079-15 ed4.0 (2010-01) CAN/CSA-E79-18-95 (R2009) IEC 60079-18 ed3.0 (2009-05) CAN/CSA-E61241-1-1-02 (R2010) IEC 60079-31 ed1.0 (2008-11)

IEC Standards in the CEC Why did CEC Adopt the IEC Zone System? To Access the Types of Protection Why did we Adopt IEC Standards in 1995? IEC had no Certification programme Products were Typically ATEX Approved We Had no way to add Input to ATEX EN Standards We did with IEC That’s Why we Adopted those But We don’t Actually Comment Much

Acceptable Equipment For Class 1, Locations Division System Class 1, Division 1 Intrinsically Safe (i, ia) Other Acceptable Equipment Class 1, Division 2 Class 1, Division 1 Flame Proof (d) Increased Safety (e) Encapsulation (m) Oil Immersed (o) Pressurized (p) Intrinsically Safe (i, ia, ib) Sand Filled (q) Non-Sparking (nX) Non-Incendive Other Acceptable Equipment

Acceptable Equipment For Class 1, Locations Zone System Class 1, Zone 0 Intrinsically Safe (i, ia) Class 1, Zone 1 Class 1, Zone 0 Class 1, Division 1 Flame Proof (d) Increased Safety (e) Encapsulation (m) Oil Immersed (o) Pressurized (p) Intrinsically Safe (i, ia, ib) Sand Filled (q) Other Acceptable Equipment Class 1, Zone 2 Class 1, Zone 0 & 1 Class 1, Division 1 & 2 Non-Sparking (nX) Non-Incendive Other Acceptable Equipment

Hazardous Location Equipment Design Methods of Protection Two Types Containment - Explosion Proof Prevention - Explosion Protected

Elements Required For An Explosion FUEL HEAT The Fire Triangle OXYGEN

Combustible Dust Dispersion Confinement Oxygen in Air/Oxidizers Deflagration Explosion FIRE SUSPENSION in air FUEL OXYGEN HEAT CONFINEMENT Oxygen in Air/Oxidizers Combustible Dust Ignition Source

Methods Of Protection Ex “d” Flameproof or Explosion Proof Contains Explosion Vents Explosive Gases Flame Paths Cool Escaping Gases Below Ignition Temperature of Surrounding Atmosphere Minimal Damage Should Be Caused to the Internal Components

Methods Of Protection That “Contain an Explosion” All Bolts Must Be Installed Metal To Metal Joints All Ten Thousand of the Buggers Extra Care must be Taken Housing “Contains” Explosion

Methods Of Protection That “Contain an Explosion” Miniature Explosion Proof Housing Metal Explosion Proof Enclosure

Key Difference In Zone/IEC Vs. Division Approach Problem – Field Poured Sealing Fittings

Key Difference In Zone/IEC Vs. Division Approach Sealing Is Integral To The Device No Sealing Fittings Enclosure Not Compromised Terminals Are Increased Safety Seal Molded Into Housing This Is Not a Hermetically Sealed Device Hermetically Sealed Units Use A Glass Tube With a Contact Inside Operated by Magnets Lower Ratings and Less Reliable

Methods Of Protection Ex “e” Increased Safety Additional Protection Is Given to Components to Prevent Excessive Temperatures or Arcs and Sparks Used in Terminals, Motor & Lighting Fixtures Terminals Cannot Vibrate Loose or Deform the Conductor Have Increased Creepage and Clearances 

Methods Of Protection Ex “i, ia, or ib” Intrinsically Safe or Intrinsic Safety “Systems Approach” Limits Energy in the Circuit. Protected By Zener Diode Barrier Ex ‘i’ Is CSA Standard & Is The Same As Ex ia Ex ia, & Ex i Tolerate Two Faults Ex ib Tolerate One Fault

Methods Of Protection Ex “q” Powder or Sand Filled The Enclosure Is Filled With Sand or Ground Glass Displaces Hazardous Gases Isolates Hot or Arcing Components

Methods Of Protection Ex “m” Encapsulation Arcing Components Are Sealed in a Resin No Gas Can Come Into Contact With Arcing Device

Methods Of Protection Ex “o” Oil Immersion Arcing Components Are Submersed in Oil

Methods Of Protection Ex “p” Purged or Pressurized Clean Air or Inert Gas Is Passed Through the Enclosure Electrical Equipment Is Interlocked With Purging

Methods Of Protection Ex “nX” Non Sparking Non Sparking, Low Energy, (Non-incendive) Restricted Breathing Simple Pressurization Contained Spark Equipment (Hermetically Sealed) X Zone 2 Only

Multiple Methods Of Protection Products May Use Multiple Protection Methods Contact Block - Ex de IIC T6 Flameproof Contact Chamber Increase Safety Terminals Light Fixture - Ex deq IIC T4 Contact Block - Ex de IIC T6 Flameproof Contact Chamber Increase Safety Terminals Sand Filled Ballast

Major Differences When Working on Live Units

Advantages to Zone Equipment

Advantages to Zone Equipment

Advantages to Zone Equipment

Advantages to Zone Equipment

Advantages to Zone Equipment

Major Differences When Working on Live Units

The Rest of the IEC Standards Canada has adopted only a portion The CEC References Many more e.g. IEC 60079-10-1 As OBIEC Begins to be used more, more IEC Standards will be used or referenced. Those working on international projects or equipment need to understand the rest of the series.

60079-0 Explosive atmospheres - Part 0: Equipment - General requirements 60079-1 Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d" 60079-2 Explosive atmospheres - Part 2: Equipment protection by pressurized enclosures "p" 60079-5 Explosive atmospheres - Part 5: Equipment protection by powder filling "q" 60079-6 Explosive atmospheres - Part 6: Equipment protection by oil immersion "o" 60079-7 Explosive atmospheres - Part 7: Equipment protection by increased safety "e" 60079-10-1 Explosive atmospheres - Part 10-1: Classification of areas - Explosive gas atmospheres 60079-10-2 Explosive atmospheres - Part 10-2: Classification of areas - Combustible dust atmospheres 60079-11 Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i" 60079-13 Electrical apparatus for explosive gas atmospheres – Part 13: Equipment protection by pressurized room "p" 60079-14 Explosive atmospheres - Part 14: Electrical installations design, selection and erection 60079-15 Electrical apparatus for explosive gas atmospheres - Part 15: Equipment protection by type of protection "n" TR 60079-16 Electrical apparatus for explosive gas atmospheres – Part 16: Artificial for protection of analyzer(s) houses

60079-17 Explosive atmospheres - Part 17: Electrical installations inspection and maintenance 60079-18 Explosive atmospheres - Part 18: Equipment protection by encapsulation "m" 60079-19 Explosive atmospheres - Part 19: Equipment repair, overhaul and reclamation 60079-26 Explosive atmospheres - Part 26: Equipment with equipment protection level (EPL) Ga 60079-28 Explosive atmospheres - Part 28: Protection of equipment and transmission systems using optical radiation 60079-29-1 Explosive atmospheres - Part 29-1: Gas detectors - Performance requirements of detectors for flammable gases 60079-29-2 Explosive atmospheres - Part 29-2: Gas detectors - Selection, installation, use and maintenance of detectors for flammable gases and oxygen 60079-29-3 Explosive atmospheres - Part 29-3: Gas detectors - Requirements for functional safety of fixed gas detection systems 60079-29-4 Part 29-4: Gas detectors - Performance requirements of open path detectors for flammable gases 60079-30-1 Explosive atmospheres - Part 30-1: Electrical resistance trace heating - General and testing requirements 60079-30-2 Explosive atmospheres - Part 30-2: Electrical resistance trace heating - Application guide for design, installation and maintenance 60079-31 Explosive atmisoheres - Part 31: Equipment dust ignition protection by enclosure "t"

60079-32-1 Explosive atmospheres - Part 32-1: Electrostatic hazards, Guidance 60079-32-2 Explosive atmospheres - Part 32-2: Electrostatics hazards - Tests 60079-33 Explosive atmospheres - Part 33: Equipment protection by special protection ‘s’ 60079-35-1 Explosive atmospheres – Part 35-1: Caplights for use in mines susceptible to firedamp – General requirements – Construction and testing in relation to the risk of explosion 60079-35-2 Explosive atmospheres - Part 35-2: Caplights for use in mines susceptible to firedamp - Performance and other safety-related matters 60079-xx Explosive atmospheres - Requirements for Process Sealing Between Flammable or Combustible Process Fluids and Electrical Systems. 61241-0 Electrical apparatus for use in the presence of combustible dust - Part 0: General requirements 61241-11 Electrical apparatus for use in the presence of combustible dust - Part 11: Protection by intrinsic safety 'iD' 61241-1-1 Electrical Apparatus for Use in the Presence of Combustible Dust -Part 1-1: Electrical Apparatus Protected by Enclosures and Surface Temperature Limitation - Specification for Apparatus 61241-2-1 Electrical apparatus for use in the presence of combustible dust - Part 2: Test methods - Section 1: Methods for determining the minimum ignition temperatures of dust 61241-2-3 Electrical apparatus for use in the presence of combustible dust - Part 2: Test methods - Section 3: Method for determining minimum ignition energy of dust/air mixtures

61241-4 Electrical apparatus for use in the presence of combustible dust - Part 4: Type of protection "pD" TS 61241-2-2 Electrical apparatus for use in the presence of combustible dust - Part 2: Test methods - Section 2: Method for determining the electrical resistivity of dust in layers

IEC Standards Development Issues: For Manufacturers and Users Certification for IECEx allows the use of one Standard Back from Current Edition While recertification may not be necessary, There are many Issues with Out of Date Certifications This Adds Costs Which are Typically Passed on to End User Canadian Interests IEC Standards Development Dominated by EU Countries Largely Testing Agencies Some Manufacturers IEC Does Not Understand out system

IEC Standards Development The US has a Large National Committee Comment on most IEC Standards Chair or Secretary of Several Watching out for US Interests Canada Has two or three Canada is at risk of losing it’s P-status We need more members

Integrated Committee on Hazardous Location Products (ICHLP) Call For Members Review IEC Documents Add Comments Participate in ICHL Meetings No to be Held in Calgary Contact mcole@hubbell-canada.com

Questions