Transport Calculations with TranSIESTA

Slides:



Advertisements
Similar presentations
PHYSIQUE MESOSCOPIQUE
Advertisements

Javier Junquera Exercises on basis set generation Control of the range: the energy shift.
Take-home postcard. Basis set: Atomic orbitals s p d f SIESTA: Strictly localized (zero beyond cut-off radius)
Modelling of Defects DFT and complementary methods
Quantum Theory of Solids
Recap on Basis Sets Pablo Ordejon ICMAB-CSIC. Basis Sets in SIESTA Generated from the solution of the FREE ATOM (with the pseudopotential) Finite range:
Huckel I-V 3.0: A Self-consistent Model for Molecular Transport with Improved Electrostatics Ferdows Zahid School of Electrical and Computer Engineering.
Physics “Advanced Electronic Structure” Lecture 3. Improvements of DFT Contents: 1. LDA+U. 2. LDA+DMFT. 3. Supplements: Self-interaction corrections,
Improved Description of Electron-Plasmon coupling in Green’s function calculations Jianqiang (Sky) ZHOU, Lucia REINING 1ETSF YRM 2014 Rome.
Title Transport Through Single Molecules: Resonant Transmission, Rectification, Spin Filtering, and Tunneling Magnetoresistance Harold U. Baranger, Duke.
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
SpiDME meeting, Nijmegen, May 2007 Stefano Sanvito and Nadjib Baadji Computational Spintronics Group School of Physics and CRANN, Trinity College.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Application to transport phenomena  Current through an atomic metallic contact  Shot noise in an atomic contact  Current through a resonant level 
Axel Freyn, Ioannis Kleftogiannis and Jean-Louis Pichard
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
Ballistic and quantum transports in carbon nanotubes.
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT Marie Curie Tutorial Series: Modeling Biomolecules December.
Computational Solid State Physics 計算物性学特論 第7回
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP DFT Calculations.
Lectures Introduction to computational modelling and statistics1 Potential models2 Density Functional.
Мэдээллийн Технологийн Сургууль Монгол Улсын Их Сургууль Some features of creating GRID structure for simulation of nanotransistors Bolormaa Dalanbayar,
ATK 方法的扩展及其应用 王雪峰 苏州大学物理系 ZJNU-JinHua.
ENEE 704 Summary Final Exam Topics. Drift-Diffusion 5 Equations, Five Unknowns. – n, p, Jn, Jp,  Solve Self-Consistently Analytical Method: – Equilibrium:
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
A primer on Smeagol Víctor García Suárez.
Introduction to input & output files
Javier Junquera Code structure: calculation of matrix elements of H and S. Direct diagonalization José M. Soler = N  N N  1.
1st Summer School in Theoretical and Computational Chemistry of Catalonia July 25-29, 2007 Directors: Feliu Maseras and Pere Alemany.
Calculation of matrix elements José M. Soler Universidad Autónoma de Madrid.
Introduction to run Siesta Javier Junquera Université de Liège.
Basic introduction to running Siesta Eduardo Anglada Siesta foundation-UAM-Nanotec
Université de Liège Numerical Atomic Orbitals: An efficient basis for Order-N ab-initio simulations Javier Junquera.
Conductance of Single Molecular Junctions
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin CCTN’05, Göteborg 2005.
TEMPLATE DESIGN © SIMULATION OF RESONANT TUNNELING DIODES FOR NANOELECTRONIC APPLICATIONS Palla Pavankumar, Perumalla.
Simulation of transport in silicon devices at atomistic level Introduction Properties of homogeneous silicon Properties of pn junction Properties of MOSFET.
1 Heat Conduction in One- Dimensional Systems: molecular dynamics and mode-coupling theory Jian-Sheng Wang National University of Singapore.
Meir-WinGreen Formula
Modeling thermoelectric properties of TI materials: a Landauer approach Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical.
Conduction and Transmittance in Molecular Devices A. Prociuk, Y. Chen, M. Shlomi, and B. D. Dunietz GF based Landauer Formalism 2,3 Computing lead GF 4,5.
Explorations in quantum transport – phenomena and methods Sokrates T. Pantelides Department of Physics and astronomy, Vanderbilt University, Nashville,
UPoN Lyon 2008 G. Albareda 1 G.Albareda, D.Jimenez and X.Oriols Universitat Autònoma de Barcelona - Spain E.mail: Can analog and.
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
U Tor Vergata Charge transport in molecular devices Aldo Di Carlo, A. Pecchia, L. Latessa, M.Ghorghe* Dept. Electronic Eng. University of Rome “Tor Vergata”,
Linear scaling fundamentals and algorithms José M. Soler Universidad Autónoma de Madrid.
Fundamentals of DFT R. Wentzcovitch U of Minnesota VLab Tutorial Hohemberg-Kohn and Kohn-Sham theorems Self-consistency cycle Extensions of DFT.
Density Functional Theory Richard M. Martin University of Illinois
Comp. Mat. Science School Linear Scaling ‘Order-N’ Methods in Electronic Structure Theory Richard M. Martin University of Illinois Acknowledgements:
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
12/8/2015A. Ali Yanik, Purdue University1 Spin Dependent Electron Transport in Nanostructures A. Ali Yanik † Dissertation † Department of Physics & Network.
Multichannel Quantum Defect Theory -The Brief Introduction - Department of Chemistry Kim Ji-Hyun.
Physics “Advanced Electronic Structure” Lecture 1. Theoretical Background Contents: 1. Historical Overview. 2. Basic Equations for Interacting Electrons.
Linear scaling solvers based on Wannier-like functions P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Introduction to the SIESTA method SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 Some technicalities.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First time user guide for RTD-NEGF.
Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.
Nonequilibrium Green’s Function Method for Thermal Transport Jian-Sheng Wang.
Sandipan Dutta and James Dufty Department of Physics, University of Florida Classical Representation of Quantum Systems Work supported under US DOE Grants.
Nanoelectronics Part II Many Electron Phenomena Chapter 10 Nanowires, Ballistic Transport, and Spin Transport
Correlation in graphene and graphite: electrons and phonons C. Attaccalite, M. Lazzeri, L. Wirtz, F. Mauri, and A. Rubio.
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
Spin transport at the atomic scale Alexandre Reily Rocha and Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin,
Open quantum systems.
The Materials Computation Center. Duane D. Johnson and Richard M
Density Functional Theory (introduced for many-electron systems)
National University of Singapore
Presentation transcript:

Transport Calculations with TranSIESTA Pablo Ordejón Instituto de Ciencia de Materiales de Barcelona - CSIC, Spain

M. Brandbyge, K. Stokbro and J. Taylor Mikroelectronik Centret - Technical Univ. Denmark Jose L. Mozos and Frederico D. Novaes Instituto de Ciencia de Materiales de Barcelona - CSIC, Spain The SIESTA team E. Anglada, E. Artacho, A. García, J. Gale. J. Junquera, D. Sánchez-Portal, J. M. Soler, ....

Outline 1. Electronic transport in the nanoscale: Basic theory 2. Modeling: the challenges and our approach: The problem at equilibrium (zero voltage) Non-equilibrium (finite voltage) 3. Practicalities

1. Electronic Transport in the Nanoscale: Basic Theory d Scattering in nano-scale systems: electron-electron interactions phonons impurities, defects elastic scattering by the potential of the contact Semiclassical theory breaks down – QM solution needed Landauer formulation: Conductance as transmission probability S. Datta, Electronic transport in mesoscopic systems (Cambridge)

Narrow constriction (meso-nanoscopic) kx Transversal confinement QUANTIZATION

Landauer formulation - no scattering k m m+dm BZ QUANTUM OF CONDUCTANCE

Landauer formulation - scattering Transmission probability of an incoming electron at energy : Current: Perfect conductance (one channel): T=1 transmission matrix: eV I

2. Modeling: The Challenges and Our Approach Model the molecule-electrode system from first principles: No parameters fitted to the particular system  DFT Model a molecule coupled to bulk (infinite) electrodes Electrons out of equilibrium (do not follow the thermal Fermi occupation) Include finite bias voltage/current and determine the potential profile Calculate the conductance (quantum transmission through the molecule) Determine geometry: Relax the atomic positions to an energy minimum

Restriction: Ballistic conduction Ballistic conduction: consider only the scattering of the incoming electrons by the potential created by the contact R L d Two terminal devices (three terminals in progress) Effects not described: inelastic scattering electron-electron interactions (Coulomb blockade) phonons (current-induced phonon excitations)

First Principles: DFT Many interacting-electrons problem mapped to a one particle problem in an external effective potential (Hohemberg-Kohn, Kohn-Sham) Charge density as basic variable: Self-consistency: Ground state theory: VXC

SIESTA http://www.uam.es/siesta Soler, Artacho, Gale, García, Junquera, Ordejón and Sánchez-Portal J. Phys.: Cond. Matt. 14, 2745 (2002) Self-consistent DFT code (LDA, GGA, LSD) Pseudopotentials (Kleinman-Bylander) LCAO approximation: Basis set: Confined Numerical Atomic Orbitals Sankey’s “fireballs” Order-N methodology (in the calculation and the solution of the DFT Hamiltonian)

TRANSIESTA Implementation of non-equilibrium electronic transport in SIESTA Atomistic description (both contact and electrodes) Infinite electrodes Electrons out of equilibrium Include finite bias and determine the potential profile Calculates the conductance (both linear and non-linear) Forces and geometry Brandbyge, Mozos, Ordejón, Taylor and Stokbro Phys. Rev. B. 65, 165401 (2002) Mozos, Ordejón, Brandbyge, Taylor and Stokbro Nanotechnology 13, 346 (2002)

The problem at Equilibrium (Zero Bias) Challenge: Coupling the finite contact to infinite electrodes Solution: Green’s Functions

Setup (zero bias) C L R Contact: Solution in finite system: C B L R B Contains the molecule, and part of the Right and Left electrodes Sufficiently large to include the screening Solution in finite system: C B L R B  ( ) = Selfenergies. Can be obtained from the bulk Greens functions Lopez-Sancho et al. J. Phys. F 14, 1205 (1984)

Calculations (zero bias): Bulk Greens functions and self-energies (unit cell calculation) Hamiltonian of the Contact region: Solution of GF’s equations  (r) Landauer-Büttiker: transmission probability: SCF PBC

The problem at Non-Equilibrium (Finite Bias) C L R L e- R 2 additional problems: Non-equilibrium situation: current flow two different chemical potentials Electrostatic potential with boundary conditions

Non-equilibrium formulation: Scattering states (from the left) Lippmann-Schwinger Eqs.: Non-equilibrium Density Matrix:

Electrostatic Potential Given (r), VH(r) is determined except up to a linear term: ( r): particular solution of Poisson’s equation a and b: determined imposing BC: the shift V between electrodes  (r) computed using FFT’s Linear term: 12 au +V/2 -V/2 Au Au

3. TranSIESTA Practicalities 3 Step process: SIESTA calculation of the bulk electrodes, to get H, r, and Self-energies SIESTA calculation for the open system reads the electrode data builds H from r solves the open problem using Green’s Functions (TranSIESTA) builds new r Postprocessing: compute T(E), I, ...

Supercell - PBC H, DM fixed to bulk in L and R DM computed in C from Green’s functions HC, VLC and VCR computed in a supercell approach (with potential ramp) B (buffer) does not enter directly in the calculation (only in the SC calc. for VHartree)

Contour integration

Contour Integration

SolutionMethod Transiesta # GENGF OPTIONS TS.ComplexContour.Emin -3.0 Ry TS.ComplexContour.NPoles 6 TS.ComplexContour.NCircle 20 TS.ComplexContour.NLine 3 TS.RealContour.Emin -3.0 Ry TS.RealContour.Emax 2.d0 Ry TS.TBT.Npoints 100 # TS OPTIONS TS.Voltage 1.000000 eV TS.UseBulkInElectrodes .True. TS.BufferAtomsLeft 0 TS.BufferAtomsRight 0 # TBT OPTIONS TS.TBT.Emin -5.5 eV TS.TBT.Emax +0.5 eV TS.TBT.NPoints 100 TS.TBT.NEigen 3