Knee 領域での空気シャワー実験 研究会「超高エネルギー宇宙線とハドロン 2008 年 4 月 25 日 瀧田 正人 東京大学宇宙線研究所.

Slides:



Advertisements
Similar presentations
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Advertisements

利用 ARGO-YBJ 的月亮阴影数据对 能标的讨论 查敏 中科院高能物理研究所. Motivation: constructing an energy “anchor” Important progress on elemental CR energy spectrum from satellite/balloon-born.
A.U. Kudzhaev, D.D. Dzhappuev, V.V. Alekseenko, A.B. Chernyev, N.F. Klimenko, A.S. Lidvansky, A.B. Chernyev, N.F. Klimenko, A.S. Lidvansky, V.B. Petkov.
Primary Cosmic-Ray Energy Spectrum Around The Knee Energy Region Measured By The Tibet Hybrid Experiment Physics at the End of the Galactic Cosmic Ray.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
1 Hadronic In-Situ Calibration of the ATLAS Detector N. Davidson The University of Melbourne.
Measurement of B (D + →μ + ν μ ) and the Pseudoscalar Decay Constant f D at CLEO István Dankó Rensselaer Polytechnic Institute representing the CLEO Collaboration.
A neural network approach to high energy cosmic rays mass identification at the Pierre Auger Observatory S. Riggi, R. Caruso, A. Insolia, M. Scuderi Department.
CMD-2 and SND results on the  and  International Workshop «e+e- Collisions from  to  » February 27 – March 2, 2006, BINP, Novosibirsk, Russia.
Status of Cosmic Rays Physics at the Knee Andrea Chiavassa Università and INFN Torino NOW 2006 Otranto 9-16 September 2006.
Cosmic-ray energy spectrum around the knee J.Huang Institute of high energy physics, Chinese Academy of Sciences China, Beijing The 2 nd HERD international.
Yu. Stenkin, UHECR'20081 On PRISMA project (proposal) Yuri V. Stenkin INR RAS.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
TAUP Conference, Sendai September The primary spectrum in the transition region between direct and indirect measurements (10 TeV – 10 PeV)
Preliminary MC study on the GRAND prototype scintillator array Feng Zhaoyang Institute of High Energy Physics, CAS, China GRAND Workshop, Paris, Feb. 015.
Contributions of the University of Bucharest to the study of high energy cosmic rays in the framework of the KASCADE-Grande experiment Octavian Sima Faculty.
Geomagnetic Spectroscopy: An Estimation of Primary Mass of Cosmic Rays Rajat K Dey 1,2 Arunava Bhadra 2 Jean-No ë l Capdevielle 3 1 Department of Physics.
Moon shadow analysis -- Using ARGO experiment Wang Bo, Zhang Yi, Zhang Jianli, Guo Yiqing, Hu Hongbo Apri for NanJing Meeting
Status and first results of the KASCADE-Grande experiment
Multi-TeV  -ray Astronomy with GRAPES-3 Pravata K Mohanty On behalf of the GRAPE-3 collaboration Tata Institute of Fundamental Research, Mumbai Workshop.
AGASA Results Masahiro Teshima for AGASA collaboration
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
XXXI International Cosmic Ray Conference, ICRC 2009 Lodz, Poland, July 7-15, 2009 Time structure of the Extensive Air Shower front with the ARGO-YBJ experiment.
The muon component in extensive air showers and its relation to hadronic multiparticle production Christine Meurer Johannes Blümer Ralph Engel Andreas.
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
Air-showers, bursts and high-energy families detected by hybrid experiment at Mt.Chacaltaya M.Tamada Kinki University M.Tamada ICRC2011, Beijing, 15 Aug.
CR spectrum and composition measured by Tibet hybrid experiment (YAC+Tibet-III) J. Huang for the Tibet ASγ Collaboration Institute of high energy physics,
Hybrid measurement of CR light component spectrum by using ARGO-YBJ and WFCTA Shoushan Zhang on behalf of LHAASO collaboration and ARGO-YBJ collaboration.
“The Cosmic Ray composition in the knee region and the hadronic interaction models” G. Navarra INFN and University, Torino, Italy For the EAS-TOP Collaboration.
Study of high energy cosmic rays by different components of back scattered radiation generated in the lunar regolith N. N. Kalmykov 1, A. A. Konstantinov.
Temporal and spatial structure of the Extensive Air Shower front with the ARGO- YBJ experiment 1 - INFN-CNAF, Bologna, Italy 2 - Università del Salento.
1 Observation Of High-Energy Neutrino Reaction And The Existence Of Two Kinds Of Neutrinos 高エネルギーニュートリノの観測と二種類のニュートリノの存在 G. T. Danby et al. Phys. Rev.
Cosmic ray physics in ALICE Katherin Shtejer Díaz For the ALICE Collaboration LatinoAmerican Workshop on High Energy Physics: Particles and Strings, Havana,
The KASCADE-Grande Experiment: an Overview Andrea Chiavassa Universita’ di Torino for the KASCADE-Grande Collaboration.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
Z. Cao, H.H. He, J.L. Liu, M. Zha Y. Zhang The 2 nd workshop of air shower detection at high altitude.
Workshop on AstroParticle Physics, WAPP 2009 Bose Institute, Darjeeling, December 2009 Extensive Air Showers and Astroparticle Physics Observations and.
QUARKS-2010, Kolomna1 Study of the Energy Spectrum and the Composition of the Primary Cosmic Radiation at Super-high Energies.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Tunka-133: Primary Cosmic Ray Energy Spectrum in the energy range 6·10 15 – eV L.A.Kuzmichev (SINP MSU) On behalf on the Tunka Collaboration 32th.
Lingling Ma IHEP China Measurement of Cosmic rays with LHAASO at 10PeV~100PeV 4th Workshop on Air Shower Detection at High Altitude Institute of High Energy.
Physics whit ACORDE (ALICE Cosmic ray detector) Arturo Fernández for ACORDE-ALICE group.
/ 15 1/ 31 Cosmic ray data and their interpretation: the Tibet hybrid EAS experiment -- Primary energy spectra of Cosmic Rays at the knee and tests of.
Shoushan Zhang, ARGO-YBJ Collaboration and LHAASO Collaboration 4 th Workshop on Air Shower Detection at High Altitude Napoli 31/01-01/ IHEP (Institute.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
32 nd ICRC –Beijing – August 11-18, 2011 Silvia Vernetto IFSI-INAF Torino, ITALY On behalf of the ARGO-YBJ collaboration Observation of MGRO J with.
Measurement of the CR light component primary spectrum B. Panico on behalf of ARGO-YBJ collaboration University Rome Tor Vergata INFN, Rome Tor Vergata.
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
L.L.Ma for LHAASO collaboration Beijing China
Expectation of Cosmic Ray Energy Spectrum with LHAASO
Recent Results from the new Tibet hybrid experiment
Andrea Chiavassa Universita` degli Studi di Torino
チャカルタヤ山宇宙線共同実験 玉田雅宣 (近畿大学) 本田 建 (山梨大学) 他Chacaltaya Collaborator.
astroparticle physics with ARGO-YBJ
Comparison Of High Energy Hadronic Interaction Models
Comparison Of High Energy Hadronic Interaction Models
Multicore Cosmic Shower in the ARGO-YBJ experiment
Litao Zhao Liaoning University&IHEP
Latest Results from the KASCADE-Grande experiment
Karen Andeena, Katherine Rawlinsb, Chihwa Song*a
Telescope Array Experiment Status and Prospects
CR spectrum and composition measured by Tibet hybrid experiment (YAC+Tibet-III) J. Huang for the Tibet ASγ Collaboration Institute of high energy.
Hadronic Interaction Model Analysis Air Shower Development
M.Tamada Kinki University
本田 建 (山梨大学) Knee 領域のEnergy Spectrum
宇宙線スペクトルと GeV-TeV diffuse-g emission
Presentation transcript:

Knee 領域での空気シャワー実験 研究会「超高エネルギー宇宙線とハドロン 2008 年 4 月 25 日 瀧田 正人 東京大学宇宙線研究所

M.Nagano, A.A.Watson (2000) Cosmic Ray Energy Spectrum

Sommers (ICRC2001)

Experiment siteg/cm 2 eμhC AKENOJapan (35.5N, 138.5E) 930 〇 1 GeV BLANCAUtah (40.2N,112.8W) 870 〇〇 CASA-MIAUtah (40.2N,112.8W) 870 〇 800 MeV DICE860 〇 800 MeV 〇 EAS-TopItaly (42.5N,13.6E) 820 〇 1 GeV HEGRALa Palma (28.8N,17.9W) 790 〇〇 KASCADE (electrons/muons)Germany (49.N, 8.E) 1022 〇 230 MeV KASCADE (hadrons/muons) MeV50 GeV KASCADE (neural network)1022 〇 230 MeV MSU1020 〇 Mt. Norikura Japan735 〇 TibetTibet (30.1N,90.5E) 606 〇 Tunka 〇 Yakutsk (low energy)1020 〇

All particle spectrum Knee around 3-5 PeV ICRC2003 M. Takita

All particle energy spectrum

ICRC2007 Y. Tsunesada (BASJE) Energy dependence of

Research purpose Thus, measurements of the primary cosmic rays around the "knee" are very important and its composition is a fundamental input for understanding the particle acceleration mechanism that pushes cosmic rays to very high energies. According to the Fermi acceleration with supernova blast waves, the acceleration limit E max ≒ Z * 100 TeV. The position of "knee" must be dependent on electric charge Z

KASCAD E e/  Hadron

Energy Spectrum of Single Elements

Kascade data 2005: different results with different Monte Carlo approaches in data reconstruction. Rigidity scenario not confirmed. Kascade data Kascade data 2003: seem to confirm the rigidity model. BUT

KASCADE : Astroparticle phys. 24 (2005) 1-25

TIBET Yangbajing, Tibet, China 90 ゜ 53E, 30 ゜ 11N, 4,300 m a.s.l. (606g/cm 2 ) BD &EC Air Shower array Phys. Lett. B. 632(2006)58 Tibet-II Air Shower array

Tibet-I to Tibet-II/HD Number of detector I : 45 II : 185 HD: 109 Mode Energy I : 10 TeV II : 10 TeV HD: 3 TeV Area I : 7,650 m 2 II : 37,000 m 2 HD: 5,200 m 2

Characteristics of the Tibet Hybrid Experiment High altitude (4300m a.s.l. 606 g/cm 2 ). Energy determination is made under minimum chemical- composition dependence around the knee. Observe core structure by burst detectors (BD) & emulsion chambers (EC) Select air showers of light-component origin by high energy core detection. (σ ∝ A 2/3 )  Young showers are mostly of proton and helium origins. Air shower axis is known with Δr < 1m.  N e and s are determined precisely. Smaller interaction-model dependence for forward region than backward.

検出方法 宇宙線 空気シャワー シンチレーション光

2 nd particle density 2 nd particle timing Cosmic ray energyCosmic ray direction Air Shower Detection 到着時間 (ns) 粒子数 ~10 TeV

シャワーサイズ Ne の計算( NKG 関 数) ~3 x eV

Constant fitting o o + Systematic pointing error < 0.01 o Absolute Energy Scale error –4.4% %stat +- 8%sys Energy dependence of Displacements Caused by Geomagnetic field Verification  Absolute energy scale  Pointing error Cosmic Ray Energy Calib. by the Moon’ Shadow by Tibet-III

EC and BD Total EC area : 80 m 2

EC and BD 1)A structure of each EC used here is a multilayered sandwich of lead plate and photosensitive x-ray films, photosensitive layers are put every 2 (r.l.) (1 r.l.=0.5cm) of lead in EC. Total thickness of lead plates is 14 r.l. 2)  family is mostly cascade products induced by high energy  0 decay  - rays which are generated in the nuclear interactions at various depths. 3) It is worthwhile to note that the major behavior of hadronic interactions as well as the primary composition are fairly well reflected on the structure of the family observed with EC.

-M.C. Simulation - Hadronic int.model CORSIKA ( Ver ) – QGSJET01– – SIBYLL2.1 – Primary composition model HD (Heavy Dominant) PD (Proton Dominant) HD model 10 14eV 10 15eV 10 16eV Proton He Iron Other PD model 10 14eV 10 15eV 10 16eV Proton He Iron Other The experimental conditions for detecting  family (E  >= 4TeV, N   =4,  E  >=20 TeV) events with EC are adequately taken into account. For example, our EC has a roof, namely, the roof simulation and EC simulation are also treated.

HD modelPD model Primary composition model

Model Dependence of  -family (Generation+Selection) Efficiency in EC QGSJET SIBYLL SIBYLL/QGSJET ~1.3 SIBYLL/QGSJET ~ 1.3 SIBYLL QGSJET SIBYLL QGSJET

Model Dependence of Air Shower Size Accompanied by  -family

Procedures to Obtain Primary Proton Spectrum (  -family selection criteria : Emin=4TeV, Ng=4, sumE >=20TeV, Ne >=2x10 5 ) AS+ECfamily matching eventANN Proton identification (Correlations) (E ,N ,,,sec(θ), Ne ) Int. modelsQGSJETExpt.(80m 2 ) ( ) (699days) SIBYLLExpt.(80m 2 ) ( ) (699days) PrimaryHDPDHDPD Total sampling primary 2x10 8 1x10 8 2x10 8 1x10 8 Number of  -family Selected by ANN (T <=0.4)

Event Matching between EC+BD+AS AS+ECfamily matching event ANN Proton identification (Correlations) (E ,N ,,,sec(θ), Ne ) Measurement Parameter Location(x, y) Time (t) EC (  family) AS BD E ,N ,,,sec(θ) Direction( θ,  ) Y NO Y Y Y NO NO Y Y Ne E0 NbNb

AS&family matching by time coincidence, N burst >10 5 and test 177 ev selected ev expected

Fractions of P, He, M, Fe components (MC) making air showers accompanied by γ-families ModelEnergy(eV)PHeMFe QGSJET+HD ± ±1.200 (%) ± ± ±0.91.6±0.3 SIBYLL+HD ± ±0.800 (%) ± ± ±0.81.6±0.3 QGSJET+PD ±0.88.2±0.800 (%) ± ±0.63.4±0.40.6±0.1 SIBYLL+PD ±0.65.8±0.600 (%) ± ±0.63.4± ±0.01

Selection of proton-induced events by Artificial Neural Network (ANN) (1) sumE ( Total energy EC ) (2) Ng ( number of ganma family EC ) (3) ( mean lateral spread : ( ~ ( ×H) / EC) (4) ( mean energy flow spread EC ) (5) sec(θ) ( Zenith angle of gamma family EC ) (6) Ne ( Shower size of the tagged air showers AS )

Selection of proton-induced events with ANN Parameters for training ( sumE, Ng,,, sec(θ), Ne ) Target value for protons=0 others=1 Define threshold value “T th ” Selection efficiency of proton events as a function of “T th ” Efficiency~75% Tth=0.4 Purity~85% Target Value (T)

Comparison of Target Value Distribution. between DATA and MC

Back check: Selection of proton-induced events by ANN

Air shower size spectrum of p-like events vs MC ( for proton like events (ANN out-put <=0.4))

Primary energy estimation ( for proton like events )( 1.0 < sec(theta) <=1.1 )

Back check: Conversion factor for p-like EV ( by QGSJET + HD ( ANN out-put <= 0.4 ) )

Energy resolution

Primary proton spectrum Preliminary (KASCADE data: astro-ph/ ) All Proton KASCADE (P) Present Results (a) ( by QGSJET model) (b) ( by SIBYLL model )

Primary helium spectrum (a) (by QGSJET model)(b) (by SIBYLL model)

Primary ratio Tibet KASCADE (a) (by QGSJET model) (b) ( by SIBYLL model ) All –(P+He) All

733 Scintillators Tibet III AS array + Burst Detector Burst hut 80 m 2 coverage by 100 burst detectors.

Pb 7r.l. Iron 1 cm Scint. 2 cm Box Phase II hybrid experiment Scintillator 50cm x 160cm x 2cm. viewed with 4 PhotoDiodes. Measure size and position of the burst (e.g., e.m. cascade) Electromagnetic component over GeV is responsible for burst size. Scint. was calibrated by accelerator beam.

Proton+Helium spectrum Phase I Phase II

Proton+Helium spectrum Phase I Phase II

Tibet AS (~8.3 万 m 2 ) +MD (384ch, ~10 4 m 2 ) Tibet AS + MD の  点源に対する感度 Tibet AS: Energy and direction of air shower Cosmic ray(P,He,Fe…) Particle density & spread Separation of particles Tibet AS+YAC (1~5 千 m 2 ) 青が期待値 YAC Knee p, He, Fe 100TeV 

Summary ( 1 ) All particle E spectrum -> KASCADE ~= Tibet ( 2 ) Composition KASCADE: small  stat, but large  syst(2~5) x100% Rigidity scenario not confirmed All particle knee bend by light elements Tibet: Large  stat(~10%), but small  syst (~30% for p) The knee of all particle spectrum is composed of nuclei heavier than P + He