Physics of multiferroic hexagonal manganites RMnO 3 Je-Geun Park Sungkyunkwan University KIAS 29 October 2005.

Slides:



Advertisements
Similar presentations
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Advertisements

Mechanism of the Verwey transition in magnetite Fe3O4
Ivane Javakhishvili Tbilisi State University Institute of Condensed Matter Physics Giorgi Khazaradze M Synthesis and Magnetic Properties of Multiferroic.
Inelastic Magnetic Neutron Scattering on the Spin-Singlet Spin- ½ FCC System Ba 2 YMoO 6 Jeremy P. Carlo Canadian Neutron Beam Centre, National Research.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Mesoscopic phase modulations in complex materials Sang-W Cheong, Rutgers University NSF-DMR Intriguing cross-coupling phenomena in multiferroics.
KIAS Emergence Workshop 2005 Manybody Physics Group SKKU Valence bond solid order through spin-lattice coupling Jung Hoon Han & Chenglong Jia Sung Kyun.
Junghoon Kim and Jung Hoon Han Department of Physics Sungkyunkwan University.
~20 Monte Carlo Study of the J 1 -J 2 antiferromagnetic XY model on the triangular lattice Department of Physics Sungkyunkwan University Jin-Hong.
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Short range magnetic correlations in spinel Li(Mn Co ) 2 O 4.
Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.
Martin Lees Magnetic ordering in Ca 3 Co 2 O 6 Introduction: Why is Ca 3 Co 2 O 6 interesting? Zero field magnetic order and ordering in high field: Magnetization.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Geometric Frustration in Large Arrays of Coupled Lasers Near Field Far Field Micha Nixon Eitan Ronen, Moti Fridman, Amit Godel, Asher Friesem and Nir Davidson.
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
University of Wisconsin-Madison Department of Materials Science and Engineering Opportunities for Coherent Scattering in Ferroelectrics and Multiferroics.
The 5th Korea-Japan-Taiwan Symposium on Strongly Correlated Electron System Manybody Lab, SKKU Spontaneous Hexagon Organization in Pyrochlore Lattice Jung.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Spin dynamics in Ho 2-x Y x Sn 2 O 7 : from the spin ice to the single ion magnet G. Prando 1, P. Carretta 1, S.R. Giblin 2, J. Lago 1, S. Pin 3, P. Ghigna.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Magnetic transitions of multiferroics revealed by photons 黃迪靖 同步輻射研究中心 清華大學物理系 May 9, 2007 Multiferroicity Soft x-ray magnetic scattering Magnetic transitions.
C. Doubrovsky1, F. Bouquet1, C. Pasquier1, P. Senzier1
Sept. 14 th 2004 Montauk, Long Island, NY Jason S. Gardner NIST, Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Vector Chiral States in Low- dimensional Quantum Spin Systems Raoul Dillenschneider Department of Physics, University of Augsburg, Germany Jung Hoon Kim.
Example: Magnetic field control of the conducting and orbital phases of layered ruthenates, J. Karpus et al., Phys. Rev. Lett. 93, (2004)  Used.
Self-Organizations in Frustrated Spinels Seung-Hun Lee National Institute of Standards and Technology.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Magnetic Neutron Diffraction the basic formulas
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
KIAS workshop Sept 1, 2008 A tale of two spin chiralities in frustrated spin systems Jung Hoon Han (SungKyunKwan U, Korea)
The Magnetic phase transition in the frustrated antiferromagnet ZnCr 2 O 4 using SPINS Group B Ilir Zoto Tao Hong Yanmei Lan Nikolaos Daniilidis Sonoko.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Magnetic properties and NMR data of Rb2MnCl4, RbMnCl3 Kang, Byeongki
Magnets without Direction Collin Broholm Johns Hopkins University and NIST Center for Neutron Research  Introduction  Moment Free Magnetism in one dimension.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Inelastic Scattering: Neutrons vs X-rays Stephen Shapiro Condensed Matter Physics/Materials Science February 7,2008.
Emergent Nematic State in Iron-based Superconductors
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Vector spin chirality in classical & quantum spin systems
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Brookhaven Science Associates U.S. Department of Energy Chi-Chang Kao National Synchrotron Light Source Brookhaven National Laboratory Recent Developments.
March Meeting 2007 Spin-polarization coupling in multiferroic transition-metal oxides Shigeki Onoda (U. Tokyo) Chenglong Jia (KIAS) Jung Hoon Han (SKKU)
Jeroen van den Brink LaOFeAs -- multiferroic manganites Krakaw 19/6/2008 Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Evolution of the orbital Peierls state with doping
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Some open questions from this conference/workshop
Image © NPG Rogério de Sousa
Hyperfine interaction studies in Manganites
B4 Single crystal growth of tunable quantum spin systems
Spin-Peierls Effect on Frustrated Spin Systems
Spin-lattice Interaction Effects in Frustrated Antiferromagnets
Pressure-induced Superconductivity in CaFe2As2 -JPCM 20, (2008)
Neutron studies of iron-based superconductors
Presentation transcript:

Physics of multiferroic hexagonal manganites RMnO 3 Je-Geun Park Sungkyunkwan University KIAS 29 October 2005

Outline Introduction Part 1: Phonon scattering due to short-ranged spin fluctuations of YMnO 3 Part 2: Direct evidence of coupling among spin, lattice, and electric dipole moment for YMnO 3 and LuMnO 3 Part 3: Doping and Pressure effects on the magnetic structure Summary

What is multiferroic behavior? Ferromagnetism Fe 3 O 4 Ferroelectricity PbTiO 3 Examples : Ni 3 B 7 O 13 I, BiMnO 3, BiFeO 3, RMnO 3 (R=Ho-Lu, Sc, Y), RMn 2 O 5 (R=Tb,Dy)

Renaissance of Multiferroic Multiple State Memory Device Write E / Read M Write M / Read E Magnetic valve Data storage Tunable sensors Spin transistor Key Issue : Coupling among P, M, and  N. A. Spaldin and M. Fiebig Science (2005)

T. Lottermoser et al., Nature (2004) HoMnO 3 Control of Magnetic Phase by E

Controlling Polarization by Magnetic field N. Hur, S.-W. Cheong et al., Nature (2003) A similar demonstration was presented by Prof. Tokura’s group for TbMnO 3. see T. Kimura Nature (2003)

Multiferroic Hexagonal Manganites RMnO 3

antiferromagnet ic ordering temperature (K) ferroelectric ordering temperature (K) a (Å) c (Å) ScMnO 3 129~ YMnO HoMnO 3 76~ ErMnO TmMnO 3 86~ YbMnO LuMnO 3 96~ Summary of properties of Hexagonal Manganites

T.Katsufuji et al., PRB (2001) Wo-chul Yi et al.Appl. Phys. Lett., (1998) Ferroelectric Antiferromagnetic Multiferroic Behavior

Hexagonal structure Othorhombic structure AMnO 3 O1 O2 O3 O4

Crystal field level of Mn 3+ Orthorhombic manganites Jahn-Teller active egeg t 2g 3z 2 -r 2 x 2 -y 2 xz,yz xy Hexagonal manganites J. S. Kang, JGP et al., PRB 71, (2005) Jahn-Teller inactive egeg t 2g x 2 -y 2 yzxz xy 1.7 eV : IR 5~6 eV : PES 3z 2 -r 2

antiferromagnet ic ordering temperature (K) ferroelectric ordering temperature (K) a (Å) c (Å) ScMnO 3 129~ YMnO HoMnO 3 76~ ErMnO TmMnO 3 86~ YbMnO LuMnO 3 96~ Origin of FE transition?

The ferroelectric instability is due to Y-O displacement, which is accompanied by MnO 5 rotation. See B. van Aken et al., Nature Materials (2004)

2D Triangular lattice of Mn moments O1 O2 O3 O4 Mn

Irreducible representations   1 representation   2 representation   3 representation   4 representation A. Munoz et al., PRB (2000)

11 33 a (Å) = (1) b (Å) = (2) V (Å 3 ) = (1) a (Å) = (1) b (Å) = (2) V (Å 3 ) = (1) Magnetic Moment (  B ) 3.30(2) Magnetic Moment (  B ) 3.25(2) Reliability factors R p = 5.79 % R wp = 7.93 % R mag = 7.88 %  2 = 2.70 Reliability factors R p = 5.83 % R wp = 7.98 % R mag = 7.35 %  2 = 2.74 Magnetic structure YMnO 3 Junghwan Park, JGP et al., Applied Physics A (2002)

Inelastic Neutron Scattering of YMnO 3 Junghwan Park, JGP et al., Phys.Rev.B (2003) J=3 meV,  =0.95, D=0.03 meV

Spin dynamics of single crystal YMnO 3 T. Sato et al., Phys.Rev. B (2003) J 1 =-3.4(2) meV, J 2 =-2.02(7) meV J’ 1 -J’ 2 =0.014(2) meV D 1 =-0.028(1) meV D 2 =0.0007(6) meV

Questions What are the effects due to the short-ranged magnetic fluctuations on their physical properties? How are the magnetic and electric dipole moments coupled to one another? What are doping effects on the magnetic properties?

Part 1: Phonon scattering due to short- ranged spin fluctuations of YMnO 3 Phys. Rev. B 68, (2003) Phys. Rev. Lett. 93, (2004)

Geometrical frustration Triangular lattice with AF interaction Part 1 YMnO 3

Diffuse scattering seen in YMnO 3 well above T N : Evidence of short ranged magnetic correlation, i.e. spin liquid phase Data taken at HANARO, Korean research reactor Part 1 HANARO 30MW

: measured difference curve : the form factor of Mn 3+ : the distance between nearest neighboring spins E.F. Bertaut et al. Solid State Commun. 5, 279(1967) 80 K Data subtracted off by the 300 K data Part 1

Fitting of I(Q)/F 2 (Q) of YMnO 3 Å Å Part 1 Junghwan Park, JGP et al., Phys.Rev.B (2003)

Spin liquid phase in the paramagnetic phase Part 1

Additional scattering of acoustic phonons due to spin liquid phase Part 1

YMnO 3 P. Sharma, JGP et al., PRL (2004) (Å)(Å) Part 1

Part 2: Direct evidence of coupling among spin, lattice, and electric moments for YMnO 3 and LuMnO 3 Phys. Rev. B Rapid Comm. 71, (2005)

(Å)(Å) c ( Å ) Junghwan Park, JGP et al., Applied Physics A (2002) Temperature dependence of moment and lattice constants exex eyey plane z=0 plane z=1/2 Г1 magnetic structure Part 2

Temperature dependence of a, c, and volume up to 1200 K : High temperature neutron diffraction data HT: P 63/m mc LT: P 63 cm Part 2 J. Park, JGP (unpublished)

SIRIUS ( High resolution and high intensity powder diffractometer KENS Part 2

Refinement results : TOF diffractometer SIRIUS at KEK 10K300K Y(1)z0.2773(7)0.2727(8) Y(2)z0.2318(6)0.2320(7) Mnx0.3423(1)0.3330(1) O(1)x0.3007(4)0.3076(4) O(1)z0.1606(7)0.1625(7) O(2)x0.6399(4)0.6414(4) O(2)z0.3339(7)0.3360(7) O(3)z0.4804(8)0.4754(9) O(4)z0.0193(7)0.0163(8) R wp 6.29%4.19% RpRp 4.89%3.42% Part 2

Temperature dependence of atom positions Refinement results Å (Å)(Å) (Å)(Å) (Å)(Å) O1 O2 O3 O4 Mn Part 2

u KEK YMnO 3 results Part 2

Coupling among magnetic moments, lattice, electric dipole moments Y : 3+ Mn ; 3+ O : 2- Part 2 Seongsu Lee et al., PRB (2005)

Part 3: Doping and Pressure Effects on the magnetic properties Phys. Rev. B 72, (2005) JETP 82, 212 (2005)

2D Triangular lattice of Mn moments O1 O2 O3 O4 Mn Part 3

Doping effects of (Er 1-x Y x )MnO 3 Part 3

Irreducible representations  1 representation  2 representation  3 representation  4 representation Part 3 YMnO 3 ErMnO 3

Magnetic structure of (Er 1-x Y x )MnO 3 Part 3

2D Triangular lattice of Mn moments O1 O2 O3 O4 Mn Part 3

Mn-site doping effects in Y(Mn,X)O 3 with X=Zn, Al, and Ru Part 3 Mixing of  1 and  2 structures

1.Mixing of magnetic structure Γ 1  Γ 1 + Γ 2 : for 2.5 GPa, μ ord = 1.52 μ B with  =60 o at 10K: 2.Diffuse scattering enhanced with pressure Part 3 External Pressure Effects on YMnO 3

Summary Spin liquid phase evidenced by the diffuse peaks scatters acoustic phonons through unusually strong spin-phonon coupling, which then gives rise to a significant reduction in thermal conductivity in the paramagnetic phase. We have shown that below T N the magnetic moments of YMnO 3 and LuMnO 3 are strongly coupled to the lattice degrees of freedom with further coupling to the ferroelectric moments. However, an underlying microscopic mechanism for such a coupling is not clear yet. The magnetic ground states of RMnO 3 are so subtle that even a small doping can induce mixing between different magnetic states.

Acknowledgements Seongsu Lee, Misun Kang, Jung Hoon Han, H. Y. Choi, A. Pirogov: Sungkyunkwan University Changhee Lee: KAERI, Korea W. Jo: Ewha Womans University, Korea S-W. Cheong: Rutgers University, USA T. Kamiyama: KEK, Japan R. Bewley: ISIS, UK Jeongsu Kang: Catholic University, Korea D. Kozlenko: Frank Laboratory, Russia