Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel,

Slides:



Advertisements
Similar presentations
Raman Spectroscopy A) Introduction IR Raman
Advertisements

Lecture 12 Molecular Photophysics
Molecular Fluorescence Spectroscopy
Condensed phase vs. Isolated gas phase spectra Solution phase A A A A A A W W W W W WW W W W W W W W W W W W: water A: sample ( nm) ( nm) Isolated.
Electronic Spectroscopy of 1-Methylpyrene cation and related species. D. Kokkin, C. Marshall, A. Bonnamy, And C. Joblin and A. Simon.
Spectra of dipole bound states and their role in the electron attachment in interstellar clouds Felix Güthe 1,2 1 abcd Switzerland Ltd., Baden, Switzerland.
Electronic Spectroscopy of long Carbon Chains HC 2n H (n= 8-13) in the Gas Phase Felix Güthe*, Hongbin Ding, Thomas Pino and John P. Maier Institut für.
Diagnosis of a benzene discharge with a mass-selective spectroscopic technique Felix Güthe, Hongbin Ding, Thomas Pino and John P. Maier Institute of Physical.
Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel,
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
Infrared Spectroscopy
TOF Mass Spectrometer &
Structure Determination of Silicon Clusters in the Gas Phase A Vibrational Spectroscopy and DFT Investigation Jonathan T. Lyon, Philipp Gruene, Gerard.
IR spectroscopy of first-row transition metal clusters and their complexes with simple molecules FELIX facility, Radboud University Nijmegen, the Netherlands.
RamanRaman. Scattering Tyndall scattering – if small particles are present During Rayleigh scattering (interaction of light with relatively small molecules)
Structures and Spin States of Transition-Metal Cation Complexes with Aromatic Ligands Free Electron Laser IRMPD Spectra Robert C. Dunbar Case Western Reserve.
68th International Symposium on Molecular Spectroscopy Ohio State University June 17-21, 2013 Wei-Li Li, Tian Jian, Gary V. Lopez, and Lai-Sheng Wang Department.
Structure Determination by Spectroscopy Mass spectroscopy Ultraviolet-visible spectroscopy Infrared spectroscopy Nuclear magnetic resonance spectroscopy.
Electronic spectroscopy of Li(NH 3 ) 4 Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University of Leicester UK.
NEUTRAL AND HYDROGENATED CARBON CLUSTERS : WHAT CAN WE LEARN WITH A REMPI EXPERIMENT ? Thomas Pino, Felix Güthe, Hongbin Ding and John P. Maier Institute.
States and transitions
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
Chapter 2: IR Spectroscopy Paras Shah
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Fluorescence Spectroscopy
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
Higher Electronic Excited States of Jet-Cooled Aromatic Hydrocarbon Radicals: 1-phenylpropargyl (C9H7), 1-naphthylmethyl (C11H9), 2-naphthylmethyl (C11H9)
Interrogating hydrocarbon radicals
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
Copyright © Professor Sang Kuk Lee, Department of Chemistry, Pusan National University. All rights reserved. 1 The 67 th International Symposium on Molecular.
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
LASER PHOTODISSOCIATION SPECTRA OF THE ANILINE-ARGON CATIONIC CLUSTER IN THE NEAR INFRARED T. PINO, S. DOUIN, Ph. BRECHIGNAC Laboratoire de Photophysique.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Outline Start Chapter 18 Spectroscopy and Quantitative Analysis.
1 The Red Rectangle Nebula excited by excited species Nadine Wehres, Claire Romanzin, Hans Van Winckel, Harold Linnartz, Xander Tielens.
Lecture 7 Mass Spectrometry UV/Vis Spectroscopy
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
1.1 What’s electromagnetic radiation
California State University, Monterey Bay CHEM312
UV SPECTROSCOPY Absorption spectra.
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Spectroscopic investigation of temperature effects on the hydration structure of phenol cluster cation Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
Tyler P. Troy, Scott H. Kable, Timothy W. Schmidt Department of Chemistry, University of Sydney Scott A. Reid Department of Chemistry, Marquette University.
IR photodepletion and REMPI spectroscopy of Li(NH 2 Me) n clusters Tom Salter, Victor Mikhailov, Corey Evans and Andrew Ellis Department of Chemistry International.
The Spectra of Solid Xenon Luminescence Excited by the Bulk Electrical Discharge E.B. Gordon, Institute of Problems of Chemical Physics RAS, Chernogolovka.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
Lecture 3 Mass Spectrometry and Infrared Spectroscopy.
Absorption Spectroscopy
SPECTRA OF JET-COOLED ALL- BENZENOID PAHS - TRIPHENYLENE (C 18 H 12 ) AND HEXA-PERI- HEXABENZOCORONENE(C 42 H 18 ) DAMIAN L. KOKKIN, TYLER P. TROY, NEIL.
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
Section Spectroscopic Analysis of Aldehydes and Ketones
Electronic spectroscopy of trapped PAH photofragments
Excited state characterization of protonated aromatic molecules
Photodetachment spectrum of l-C3H2-: The role of dipole bound states for electron attachment in interstellar clouds F. Güthe*1,3, M. Tulej2,3, and J. P.
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Jun Jiang, Angelar Muthike, and Robert W. Field
Analytical techniques
from W. Demtröder “Molecular Physics”
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Raman Spectroscopy A) Introduction IR Raman
LASER SPECTROSCOPY OF THE (ELUSIVE) JET-COOLED SiCF FREE RADICAL
from W. Demtröder “Molecular Physics”
71st ISMS UV Photodissociation Spectroscopy of Temperature-Controlled Hydrated Phenol Cluster Cation Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki.
Raman Spectroscopy A) Introduction IR Raman
Presentation transcript:

Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 1 abcd Switzerland Ltd., Baden, Switzerland 2 Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 3 Laboratoire de Photophysique Moleculaire, Universite Paris-Sud, Orsay, France 4 Sydney University, Sydney, Australia Bunsentagung, Dresden 2004 Gas phase electronic spectra of linear carbon chains: HC n+1 H, HC n H, HC n+1, HC n

hypothetical new allotrope diamond: sp3 graphite: sp2 “polyyne”: sp hypothetical new allotrope molecular wire precursor nano tubes, fullerenes etc. interstellar molecules optical properties: transition n-> ∞∞ band gap bulk behaviour optical properties: band gaps absorption in the ISM ->spectroscopy Nanowires

taken from: Interstellar molecules

K.-H. Homman, Angew. Chem. 1998, 110, 2572; Angew. Chem. Int. Ed. Engl. 1998, 37, 2435; Flames

Picture : H. Linnartz Pulsed Electrical Discharge

2= 157 nm, 189nm, 212nm Experiment

Mass spectrum

electronic transitions- HC 2n H excitations:   + g  →→ (n)  u / (n-1)  g →→ (n)  g/u A   u (n)  u / (n-1)  g →→ (n)  g/u    + u (n)  u / (n-1)  g →→ (4n)  g/u    u (4n-1)  g/u →→ (n)  g/u    u

HC 2n H(n=8-13):   + g  →→   + u R2CPI-spectra of acetylenic chains

 states: HC 6 H, HC 8 H, HC 10 H, HC 12 H, HC 14 H HC 2n H(n=3-7):   + g →→   u,   - u  dipole-forbidden ( bending)

strong B-transiton! Observed and Calculated Values

electronic transitions- HC 2n+1 H excitations:   - g  →→ (n-1)  g / (n-1)  u →→ (n)  u / (n-1)  g a   - u (n)  u / (n-1)  g →→ (n)  g/u b   - u (n)  u / (n-1)  g →→ (4n+4)  g/u C   u mixing of degenerate a(   - u ) and  b(   - u ) yields    - u )=a+b/sqrt(2)    - u )=a-b/sqrt(2) Dewar-Longuet-Higgins (1954, Proc. Phys. Soc. ) on odd alternant hydrocarbons: A occurs at longer wavelength and is weaker than B B must be the strongest transition

The HC 2n+1 H Series: HC 7 H, HC 9 H, HC 11 H, HC 13 H HC 2n+1 H(n=3-6): X   - g  →→ A   - u,

strong B-transiton HC 19 H is weak in mass spectrum, but still visible HC 13 H... HC 19 H: X   - g  →→ B   - u, MRCI: Mühlhäuser, Peyerimhoff et al. (2002)

HC 13 H... HC 19 H: X   - g  →→ B   - u, as predicited in 1954 !

extrapolation to C 

isoelectronic HC n - system

Solvent and endgroup effect

Conclusions for odd and even chains: strong B-states: –f~Nc –position in the visible –broad peaks –in the ISM –similar for kation (HC 2n+1 H +, HC 2n+1 H - ), anion sp allotrope: bandgap in UV/visible matrix shifts bondlength alternation

HC 2n+1 H: anion - neutral- cation ground state: (n-1)   (n)  (n+ 1)   : (n-1)  (n)  →→ (n-1)  (n)  a   - u (n)  (n+1 )    →→ (n)  (n+1 )     b   - u same behaviour for anions and cations: a and b degenerate-> mixing to yield weak A and strong B transition

Bond length alternation: Acetylenic vs cumulenic

Bond length alternation: even and odd

Bond length alternation: neutral and anionic

backup longchains additional material

Spectroscopic techniques Spectral range: UV/visible for DIBs Direct absorption –I/I 0 –sensitivity and selectivity –multiple passes and Cavity Ring Down Spectroscopy or Laser induced Fluorescence excited state lifetime, fluorescence quantum yield Mass selective techniques –Resonance Enhanced Multi Photon Ionisation (and related - R2ColourPhotoDetachment) –change in the m/z ratio (anion  neutral ; neutral  cation, cation  Fragment) –sensitivity for ion detection is high! –additional molecular information: mass –physics of the ionisation/detachment process is important

Ion:D 0 S1S1 S1S1 Neutral:S 0 IP/2 IP common example:“uncommon Example”:C n C n *  C n-m +C m Cn+Cn+ near UV UV vis near UV C n *+  C n-m + +C m exit channels? REMPI scheme

Franck- Condon factors Excitation scheme even odd

strong solvent shift: 4000 cm -1 to the red

HCCH + HCCH - + C HCCH - HCC - C - HC 2n H HC 2n -

R2CPI-spectra of acetylenic chains   + g  →→   + u

Even : HC 6 H, HC 8 H, HC 10 H, HC 12 H, HC 14 H HC 2n H(n=3-7):   + g  →→   u

The HC 2n+1 H Series: HC 7 H, HC 9 H, HC 11 H, HC 13 H... HC 19 H

end polayacetylenes additional material

Gas phase electronic spectra of linear carbon chains: HC n+1 H, HC n H, HC n+1, HC n Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 1 abcd Switzerland Ltd., Baden, Switzerland 2 Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 3 Laboratoire de Photophysique Moleculaire, Universite Paris-Sud, Orsay, France 4 Sydney University, Sydney, Australia Bunsentagung, Dresden 2004

C 3 H- identified in the ISM by microwave spectroscopy! spectrum in the visible detected via R2CPI with F2 laser in the VUV !!

C3HC3H complicated spectrum! Renner-Teller (4 atoms) distorted more than one electronic state

C3HC3H ground state: 2  linear-bend transition 3 electronic states contribute to spectrum complicated Renner- Teller distorted spectrum! individual lines to weak to be detected in the ISM by vis-absorption

electronic transitions- C 2n H excitations:   →→ (4n+1)  →→ (n)    :weak, IR (n-1)  →→ (n)    :strong, vis (n)  →→ (n+1)    :weak UV excitations:   →→ (n)  →→ (4n+1)    (4n+1)  →→ (n+1)    (n)  →→ (n+1)   

The C 2n+1 H Series: C 3 H,C 5 H,C 7 H,C 9 H

electronic transitions- C 2n+1 H excitations:   →→ (4n+3)  →→ (n)           :vis (n-1)  →→ (n)    : vis (n)  →→ (n+1)    :

The C 2n+1 H Series: C 3 H,C 5 H,C 7 H,C 9 H 2  →→             different electronic states!

Extrapolation

end longchains additional material

C 7 H 7 - Tropyl vs. Benzyl 7 ring / 6 ring from stable C 7 H 7 + ion!

C 7 H 7 - Tropyl vs. Benzyl C 6 H 5 CH 2 :C ←← X: tropyl radical –complex spectrum –Jahn-Teller distorted: –D 7h

C 7 H 3 - identification of the structure!

variety of candidates geometries DFT B3LLYP/6_31G* calculation : –energies –rotational constants

C 7 H 3 -rotational K-structure! rotational structure! –down selection: -> 3 member ring –spin statistics : -> isomer 2

C 7 H 3 - structure identified! no methyl group! –unlike C 9 H 3,C 11 H 3,... (Schmidt et al. IJMS 2003)

REMPI aromatics additional material

R2PI-Spectra from Benzene-Discharge

end REMPI

AB + + h -> A + + B, A + detected AB + from source, hscanned for resonance

Fragmentation spectroscopy for van der Waals clusters: M·Ar n + + h -> M M·Ar n Ar,M= HC 4 H

extrapolatio n of band origins

end Fragmentation additional material