 asymmetry parameter measurements in nuclear  -decay as a probe for non-Standard Model physics K.U.Leuven, Univ. Bonn, NPI Rez (Prague), ISOLDE CERN.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
Tests of symmetries with nuclei (in nuclear b decay)
Francisco Antonio Physics 129 November 23, 2010 Li Zhengdao and Yang Zhenning, 1953.
A.B. Balantekin #, J.H. de Jesus #, R. Lazauskas*, C. Volpe* # #University of Wisconsin, Madison, USA *IPN, Orsay (France) A Conserved Vector Current test.
R. Lazauskas (SPhN Saclay), C. Volpe R. Lazauskas (SPhN Saclay), C. Volpe (IPN Orsay) Some aspects of neutrino interaction studies using beta beams SUPERNOVA.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Study of  - correlations with LPCTrap Dominique Durand LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France On behalf of the LPCTrap collaboration.
Precision measurement of the half-life and branching ratio of the T=1/2 mirror β decay of 37 K T. Kurtukian-Nieto, P. Ascher, B. Blank, G. Canchel, M.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Lecture 354/26/06. What does it mean to be radioactive? Radioactivity vs. nuclear power.
60 Co and the Death of Parity. Time Line 1949:  -  Puzzle.
The LaSpec project. At FAIR… Cheapest(?),Fully destripped…

Chiral freedom and the scale of weak interactions.
P461 - decays II1 Parity Violation in Beta Decays The Parity operator is the mirror image and is NOT conserved in Weak decays (is conserved in EM and strong)
Parity Violation in the  decay of polarized 93 Tc 17/2 - isomers B.S. Nara Singh, M. Hass and G. Goldring Weizmann Institute of Science, ISRAEL D. Ackerman,
Parity Conservation in the weak (beta decay) interaction
Study of the Time-Reversal Violation with neutrons
1 Muon Capture by 3 He and The Weak Stucture of the Nucleon Doron Gazit Institute for Nuclear Theory arXiv:
The Development of Particle Physics
The Neutron Beta-Decay Exploring the properties of fundamental interactions Hartmut Abele Bar Harbor A,B,C,D,…  The Neutron Alphabet.
Search for R-parity violating Supersymmetric effects in the neutron beta decay N. Yamanaka (Osaka University) 2009 年 8 月 12 日 at KEK In collaboration with.
Search for CP violation in  decays R. Stroynowski SMU Representing CLEO Collaboration.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
New Physics Search through  → t t → l X / b X Kazumasa OHKUMA (Fukui Tech.) Village hep-ph/ th International Symposium on.
Higgs boson spin/CP at LHC N. Godinovic (FESB-Split) on behalf of CMS collaboration Outline: Motivation S CP observables Significane for exclusion non.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.
Neutron numbers Proton numbers Nuclear Binding Energy.
C. K. MackayEPS 2003 Electroweak Physics and the Top Quark Mass at the LHC Kate Mackay University of Bristol On behalf of the Atlas & CMS Collaborations.
Probing the Standard Model via Rare Pion Decays E. Velicheva, V. Baranov JINR, DUBNA.
P Spring 2003 L5 Isospin Richard Kass
 angular correlations LPC-Team : G. Ban, G. Darius, P. Delahaye, D. Durand, X. Flechard, M. Herbane, M. Labalme, E. Liénard, F. Mauger, A. Mery, O. Naviliat,
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Status of the miniBETA experiment. Maciej Perkowski KU Leuven: prof. N. Severijns WI group JU Krakow: prof. K. Bodek group.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
May-June 2006 Fundamental Symmetries & Interactions Fundamental Symmetries and Interactions 4 th block, year 2005/2006, Rijksuniversiteit Groningen K.
Lecture 18: Total Rate for Beta Decay (etc...) 6/11/2003

What can be learned from decays? Giulia Bampa. Contents β-decay Parity violation Existence of charm quark Electro-weak phenomenology Fermi theory Cabibbo.
Wednesday, Jan. 15, 2003PHYS 5396, Spring 2003 Jae Yu 1 PHYS 5396 – Lecture #2 Wednesday, Jan. 15, 2003 Dr. Jae Yu 1.What is a neutrino? 2.History of neutrinos.
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
Correlation measurements in nuclear  -decay O.Naviliat-Cuncic Laboratoire de Physique Corpusculaire de Caen and Université de Caen Basse-Normandie NuPAC.
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
INSTITUUT VOOR KERN- EN STRALINGSFYSICA 18-September-2002Weak Interaction Trap for CHarged particles1 Present status of WITCH experiment Valentin Kozlov.
Tests of Symmetries with Neutrons and Nuclei at Very Low Energies Stephan Paul TU-München.
In-source laser spectroscopy of Pb, Bi and Po isotopes at ISOLDE Charge Radii around Z = 82 and N = 104 In-source resonant photoionization spectroscopy.
Electroweak Theory Joint Belgian Dutch German School September 2007 Andrzej Czarnecki University of Alberta.
Experimental Tests of the Standard Model of Weak Interactions D.Zakoucky, Nuclear Physics Institute ASCR, Rez near Prague Experimental facility WITCH at.
The WITCH Experiment 5th International Symposium on Symmetries in Subatomic Physics June 18-22, 2012 KVI, Groningen G. Ban 1, M. Breitenfeldt 2, V. De.
In the SM to the first order x: variable relevant to the nucleon internal structure Q 2 : Four-momentum transfer squared between the electron and the target.
J.J. Gómez-Cadenas IFIC-Valencia Summer Student School CERN, July,2006
Beta Neutrino Correlation Measurement with Trapped Radioactive Ions
Low‐energy precision measurements at the intensity frontier
Tests of fundamental weak interactions
Countries that signed the nuclear arms treaty with Iran
Handout 9 : The Weak Interaction and V-A
Self-consistent theory of stellar electron capture rates
By: Christopher Hayes November 29, 2012
The Weak Structure of the Nucleon from Muon Capture on 3He
Physics 222 UCSD/225b UCSB Lecture 2 Weak Interactions
Weak Interactions in the Nucleus II
Flavour and Non-universal Gauge Interaction
Experimental determination of isospin mixing in nuclear states;
Probing the structure of weak interactions
Presentation transcript:

 asymmetry parameter measurements in nuclear  -decay as a probe for non-Standard Model physics K.U.Leuven, Univ. Bonn, NPI Rez (Prague), ISOLDE CERN - INTC 15 November 2004 N. Severijns

STRUCTURE OF THE WEAK INTERACTION IN NUCLEAR BETA DECAY  general Lorentz invariant 4-fermion interaction Fermi, 1933 : 4-fermion interaction Lee & Yang, 1956; Wu et al., 1957 : parity violation with i = Scalar, Vector, Tensor, Axial vector, Pseudoscalar and coupling constants C i defining properties of the interaction types

In the Standard Model : * C V = 1 (CVC) * C A = ( g A /g V = (6) from n-decay ) * C V ’ = C V & C A ’ = C A (maximal P-violation) * C S = C S ’ = C T = C T ’ = C P = C P ’  0 (only V- and A-currents) experimental upper limits: (neutron and nuclear  -decay) * no time reversal violation (except for the CP-violation described by the phase in the CKM quark-mixing matrix) from: N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys., accepted

Limits (95 % CL) on possible new bosons for S- and T-interactions, from high-energies: mass limit for H ± (charged Higgs) : > 79.3 GeV (LEP-ALEPH) mass limit for leptoquarks : > 242 GeV (from pair production; combined CDF-D0) : > 298 GeV (from single production; ZEUS) Limits for f T from K ± decay [Particle Data group, Phys. Lett. B592 (2004) 1 ] : |f T / f + | = 0.012(23) from K ± e3 decay  |f T / f + | < (95% C.L.) |f T / f + | = 0.001(7) from K ±  3 decay  |f T / f + | < (95% C.L.)

J    -asymmetry for a pure Gamow-Teller transition : ( assuming maximal P-violation and T-invariance for V- and A-interactions) < Im (C T +C’ T )/C A < (90% CL) from 8 PSI, R. Huber et al., PRL 90 (2003)  A/A = 0.01  (for  m/E e  0.5) Re [(C T +C T ’) / C A ] < (95% CL) recoil corr. (induced form factors)  (see below) ; radiative corrections  A GT independent of nuclear matrix elements

Low Temperature Nuclear NICOLE cf. IS349 – IS381

1. Absolute measurements 2. Relative measurements from Geant and experimental data

First case: 114 In 1 +  0 + pure GT E 0 = 1.99 MeV log ft = 4.473(5) E  = 1.70 – 1.85 MeV N. Severijns, submitted for publication  (  m/E = 0.210) < Re (C T +C’ T )/C A < 0.08 (90% CL) ( best precision for A for a fast pure GT transition to date ! )

IsotopetransitionE endpoint (keV)  endpoint A GT log ft recoil correction *) P 10 mK type of meas. 79 Kr  +, 1/2 -  3/ (12)54 85m Kr  -, 1/2 -  3/ (6)61 79 Kr/ 85m Kr (5) rel. 67 Cu  -, 3/2 -  5/ (3)76 abs. 82g Br  -, 5 -  (8)-0.004(2)87 abs. 83 Br  -, 3/2 -  1/ (4)-0.005(3)98 abs. Proposal *) due to weak magnetism and induced tensor form factors if  A/A = 0.01  | Re (C T +C’ T )/C A |< 0.02 to 0.04 (90% CL)

Other experiments 1.Leuven - A GT 60 Co and 133 Xe, with LTNO and 15 T external magnetic field instead of hyperfine field ( I.S. Kraev, N. Severijns et al., in preparation ) 2.Los Alamos - A GT 82 Rb in MOT atom trap;  m/E = 0.13 ( S.G. Crane et al., Phys. Rev. Lett. 86 (2001) D.J. Vieira et al., Hyp.Int. 127 (2000) 387 ) 3.LPC-Caen (O. Naviliat et al) - a GT 6 He in Paul ion trap ( P. Delahaye al., Hyp.Int. 132 (2001) 479 ) All experiments are aiming at a precision of 0.5% to 1% !

Beam shifts purpose 79 Kr2A GT 85m Kr8A GT 67 Cu1A GT 68 Cu4 implantation quality 82g Br1A GT 83 Br10A GT 82 Sr1 calibrate Geant 118 Te (or 118 Xe )1 calibrate Geant Total = 28 Beam time request

Note: effect of recoil terms (induced form factors) b, g M : weak magnetism c, g A : Gamow-Teller d, g T : induced tensor