Data Mining Association Analysis: Basic Concepts and Algorithms Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction.

Slides:



Advertisements
Similar presentations
Association Rule Mining
Advertisements

Recap: Mining association rules from large datasets
Association Analysis (2). Example TIDList of item ID’s T1I1, I2, I5 T2I2, I4 T3I2, I3 T4I1, I2, I4 T5I1, I3 T6I2, I3 T7I1, I3 T8I1, I2, I3, I5 T9I1, I2,
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
Association Rule Mining. 2 The Task Two ways of defining the task General –Input: A collection of instances –Output: rules to predict the values of any.
MIS2502: Data Analytics Association Rule Mining. Uses What products are bought together? Amazon’s recommendation engine Telephone calling patterns Association.
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Frequent Item Mining.
Association Analysis. Association Rule Mining: Definition Given a set of records each of which contain some number of items from a given collection; –Produce.
Data Mining Techniques So Far: Cluster analysis K-means Classification Decision Trees J48 (C4.5) Rule-based classification JRIP (RIPPER) Logistic Regression.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Organization “Association Analysis”
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms
Mining Association Rules in Large Databases
Association Analysis (2). Example TIDList of item ID’s T1I1, I2, I5 T2I2, I4 T3I2, I3 T4I1, I2, I4 T5I1, I3 T6I2, I3 T7I1, I3 T8I1, I2, I3, I5 T9I1, I2,
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Association Analysis: Basic Concepts and Algorithms.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms
1) Go over HW #1 solutions (Due today)
© Vipin Kumar CSci 8980 Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department of Computer.
Fast Algorithms for Association Rule Mining
Eick, Tan, Steinbach, Kumar: Association Analysis Part1 Organization “Association Analysis” 1. What is Association Analysis? 2. Association Rules 3. The.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 7 = Finish chapter 3 and.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
What Is Association Mining? l Association rule mining: – Finding frequent patterns, associations, correlations, or causal structures among sets of items.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Minqi Zhou © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining By Tan, Steinbach, Kumar Lecture.
Modul 7: Association Analysis. 2 Association Rule Mining  Given a set of transactions, find rules that will predict the occurrence of an item based on.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
ASSOCIATION RULE DISCOVERY (MARKET BASKET-ANALYSIS) MIS2502 Data Analytics Adapted from Tan, Steinbach, and Kumar (2004). Introduction to Data Mining.
DATA MINING LECTURE 3 Frequent Itemsets Association Rules.
Eick, Tan, Steinbach, Kumar: Association Analysis Part1 Organization “Association Analysis” 1. What is Association Analysis? 2. Association Rules 3. The.
Data Mining Association Analysis Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/
Data & Text Mining1 Introduction to Association Analysis Zhangxi Lin ISQS 3358 Texas Tech University.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Frequent Item Mining. What is data mining? =Pattern Mining? What patterns? Why are they useful?
CSE4334/5334 DATA MINING CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai.
1 What is Association Analysis: l Association analysis uses a set of transactions to discover rules that indicate the likely occurrence of an item based.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
ASSOCIATION RULES (MARKET BASKET-ANALYSIS) MIS2502 Data Analytics Adapted from Tan, Steinbach, and Kumar (2004). Introduction to Data Mining.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Association Analysis This lecture node is modified based on Lecture Notes for.
CS 345: Topics in Data Warehousing Thursday, November 18, 2004.
Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
1 Data Mining Lecture 6: Association Analysis. 2 Association Rule Mining l Given a set of transactions, find rules that will predict the occurrence of.
Introduction to Data Mining Mining Association Rules Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
DATA MINING: ASSOCIATION ANALYSIS (2) Instructor: Dr. Chun Yu School of Statistics Jiangxi University of Finance and Economics Fall 2015.
Stats 202: Statistical Aspects of Data Mining Professor Rajan Patel
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining – Association Rules
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Frequent Pattern Mining
William Norris Professor and Head, Department of Computer Science
COMP 5331: Knowledge Discovery and Data Mining
Data Mining Association Analysis: Basic Concepts and Algorithms
Association Rule Mining
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Association Analysis: Basic Concepts and Algorithms
Mining Association Rules in Large Databases
Association Analysis: Basic Concepts
Presentation transcript:

Data Mining Association Analysis: Basic Concepts and Algorithms Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Association Rule Mining l Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction Market-Basket transactions Example of Association Rules {Diaper}  {Beer}, {Milk, Bread}  {Eggs,Coke}, {Beer, Bread}  {Milk}, Implication means co-occurrence, not causality!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Definition: Frequent Itemset l Itemset –A collection of one or more items  Example: {Milk, Bread, Diaper} –k-itemset  An itemset that contains k items l Support count (  ) –Frequency of occurrence of an itemset –E.g.  ({Milk, Bread,Diaper}) = 2 l Support –Fraction of transactions that contain an itemset –E.g. s({Milk, Bread, Diaper}) = 2/5 l Frequent Itemset –An itemset whose support is greater than or equal to a minsup threshold

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Definition: Association Rule Example: l Association Rule –An implication expression of the form X  Y, where X and Y are itemsets –Example: {Milk, Diaper}  {Beer} l Rule Evaluation Metrics –Support (s)  Fraction of transactions that contain both X and Y –Confidence (c)  Measures how often items in Y appear in transactions that contain X

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Association Rule Mining Task l Given a set of transactions T, the goal of association rule mining is to find all rules having –support ≥ minsup threshold –confidence ≥ minconf threshold l Brute-force approach: –List all possible association rules –Compute the support and confidence for each rule –Prune rules that fail the minsup and minconf thresholds  Computationally prohibitive!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Mining Association Rules Example of Rules: {Milk,Diaper}  {Beer} (s=0.4, c=0.67) {Milk,Beer}  {Diaper} (s=0.4, c=1.0) {Diaper,Beer}  {Milk} (s=0.4, c=0.67) {Beer}  {Milk,Diaper} (s=0.4, c=0.67) {Diaper}  {Milk,Beer} (s=0.4, c=0.5) {Milk}  {Diaper,Beer} (s=0.4, c=0.5) Observations: All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer} Rules originating from the same itemset have identical support but can have different confidence

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Reducing Number of Candidates l Apriori principle: –If an itemset is frequent, then all of its subsets must also be frequent –Support of an itemset never exceeds the support of its subsets –This is known as the anti-monotone property of support

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Found to be Infrequent Illustrating Apriori Principle Pruned supersets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Illustrating Apriori Principle Items (1-itemsets) Pairs (2-itemsets) (No need to generate candidates involving Coke or Eggs) Triplets (3-itemsets) Minimum Support = 3

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Apriori Algorithm l Method: –Let k=1 –Generate frequent itemsets of length 1 –Repeat until no new frequent itemsets are identified  Generate length (k+1) candidate itemsets from length k frequent itemsets  Prune candidate itemsets containing subsets of length k that are infrequent  Count the support of each candidate by scanning the DB  Eliminate candidates that are infrequent, leaving only those that are frequent

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Alternative Methods for Representation of Database l Representation of Database –horizontal vs vertical data layout