Network Security Hwajung Lee. What is Computer Networks? A collection of autonomous computers interconnected by a single technology –Interconnected via:

Slides:



Advertisements
Similar presentations
Chapter 8 Network Security
Advertisements

Network Security7-1 Chapter 7 Network Security Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Cryptography. 8: Network Security8-2 The language of cryptography symmetric key crypto: sender, receiver keys identical public-key crypto: encryption.
1 CS 854 – Hot Topics in Computer and Communications Security Fall 2006 Introduction to Cryptography and Security.
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Digital Signature Key distribution.
7: Network Security1 Chapter 7: Network security Foundations: r what is security? r cryptography r authentication r message integrity Security in practice:
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Authentication Digital Signature Key distribution.
1 Network Security What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and counter measures.
8: Network Security Security. 8: Network Security8-2 Chapter 8 Network Security A note on the use of these ppt slides: We’re making these slides.
Chapter 8 Network Security Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
1 ITC242 – Introduction to Data Communications Week 11 Topic 17 Chapter 18 Network Security.
CSE401n:Computer Networks
Network Security understand principles of network security:
Public Key Cryptography
8: Network Security8-1 Chapter 8 Network Security A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students,
Review and Announcement r Ethernet m Ethernet CSMA/CD algorithm r Hubs, bridges, and switches m Hub: physical layer Can’t interconnect 10BaseT & 100BaseT.
8: Network Security8-1 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K r e.g., key is knowing substitution.
Lecture 24 Cryptography CPE 401 / 601 Computer Network Systems slides are modified from Jim Kurose and Keith Ross and Dave Hollinger.
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Cryptography Instructor : Dr. Yanqing Zhang Presented by : Rajapaksage Jayampthi S.
Lecture 23 Cryptography CPE 401 / 601 Computer Network Systems Slides are modified from Jim Kurose & Keith Ross.
7: Network Security1 Chapter 7: Network security Foundations: r what is security? r cryptography r authentication r message integrity r key distribution.
Internet and Intranet Protocols and Applications Lecture 10 Network (Internet) Security April 3, 2002 Joseph Conron Computer Science Department New York.
1-1 1DT066 Distributed Information System Chapter 8 Network Security.
Lecture 17 Network Security CPE 401/601 Computer Network Systems slides are modified from Jim Kurose & Keith Ross All material copyright J.F.
 This Class  Chapter 8. 2 What is network security?  Confidentiality  only sender, intended receiver should “understand” message contents.
22-1 Last time □ SMTP ( ) □ DNS This time □ P2P □ Security.
Network Security7-1 Chapter 8: Network Security Chapter goals: r understand principles of network security: m cryptography and its many uses beyond “confidentiality”
Chapter 8, slide: 1 ECE/CS 372 – introduction to computer networks Lecture 18 Announcements: r Final exam will take place August 13 th,2012 r HW4 and Lab5.
Day 37 8: Network Security8-1. 8: Network Security8-2 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key:
Cryptography Wei Wu. Internet Threat Model Client Network Not trusted!!
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 part 1: Principles of cryptography.
Network Security7-1 Chapter 7 Network Security Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Prof. Younghee Lee 1 1 Computer Networks u Lecture 13: Network Security Prof. Younghee Lee * Some part of this teaching materials are prepared referencing.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 11 Network Security (1)
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
Chapter 8 Network Security Thanks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking:
1-1 1DT066 Distributed Information System Chapter 8 Network Security.
30.1 Chapter 30 Cryptography Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Security and Cryptography: basic aspects Ortal Arazi College of Engineering Dept. of Electrical & Computer Engineering The University of Tennessee.
Upper OSI Layers Natawut Nupairoj, Ph.D. Department of Computer Engineering Chulalongkorn University.
Introduction1-1 Data Communications and Computer Networks Chapter 6 CS 3830 Lecture 28 Omar Meqdadi Department of Computer Science and Software Engineering.
1 Network Security Basics. 2 Network Security Foundations: r what is security? r cryptography r authentication r message integrity r key distribution.
Network Security7-1 CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2011.
1 Symmetric key cryptography: DES DES: Data Encryption Standard US encryption standard [NIST 1993] 56-bit symmetric key, 64 bit plaintext input How secure.
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Network Security7-1 Today r Reminders m Ch6 Homework due Wed Nov 12 m 2 nd exams have been corrected; contact me to see them r Start Chapter 7 (Security)
+ Security. + What is network security? confidentiality: only sender, intended receiver should “understand” message contents sender encrypts message receiver.
PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9 PUBLIC-KEY CRYPTOGRAPHY AND RSA – Chapter 9 Principles Applications Requirements RSA Algorithm Description.
Chapter 10: Network Security Chapter goals: r understand principles of network security: m cryptography and its many uses beyond “confidentiality” m authentication.
Network Security7-1 Chapter 8: Network Security Chapter goals: r Understand principles of network security: m cryptography and its many uses beyond “confidentiality”
Network Security7-1 Chapter 7: Network Security Chapter goals: r understand principles of network security: m cryptography and its many uses beyond “confidentiality”
1 Cryptography Troy Latchman Byungchil Kim. 2 Fundamentals We know that the medium we use to transmit data is insecure, e.g. can be sniffed. We know that.
 Last Class  Chapter 7 on Data Presentation Formatting and Compression  This Class  Chapter 8.1. and 8.2.
Cryptography services Lecturer: Dr. Peter Soreanu Students: Raed Awad Ahmad Abdalhalim
8: Network Security8-1 Chapter 8 Network Security A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students,
Network security Cryptographic Principles
Chapter 8: Network Security
What is network security?
Chapter 7 Network Security
ECE/CS 372 – introduction to computer networks Lecture 16
Chapter 8: Network Security
Chapter 8: Network Security
Network Security Basics
1DT057 Distributed Information System Chapter 8 Network Security
Encryption INST 346, Section 0201 April 3, 2018.
Basic Network Encryption
Chapter 8: Network Security
Chapter 8: Network Security
Presentation transcript:

Network Security Hwajung Lee

What is Computer Networks? A collection of autonomous computers interconnected by a single technology –Interconnected via: Copper wire Fiber optics Microwaves Infrared Communication satellites, etc.

Next Generation Networks Wireless, Optical, Satellite Networks Backbone Network

Regeneration /Adaptation O-E-O SONET Terminal IP Router All Optical Networks All Optical Networks All Optical Networks All Optical Networks

Extremely high data rate AON Security Characteristics 1.6 Terabits per second is equivalent to 320 million Pages/sec of information  If eavesdropping attack lasts only 1 second, 320 million page of classified information could be compromised. 1.6 Terabits per second is 25 million simultaneous telephone conversation.  If a link failure lasts only 1 second, 25 million simultaneous telephone conversation could be disrupted.  Short and infrequent attacks or failures can result in loss of large amounts of data.

Any Security Solutions? Confidentiality Integrity  Cryptography (PKI, Digital Signature…) Availability

Friends and enemies: Alice, Bob, Trudy well-known in network security world Bob, Alice (lovers!) want to communicate “securely” Trudy, the “intruder” may intercept, delete, add messages Figure 7.1 goes here

The language of cryptography symmetric key crypto: sender, receiver keys identical public-key crypto: encrypt key public, decrypt key secret Figure 7.3 goes here plaintext ciphertext K A K B

Symmetric key cryptography substitution cipher: substituting one thing for another –monoalphabetic cipher: substitute one letter for another plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc E.g.: Q: How hard to break this simple cipher?: brute force (how hard?) other?

Symmetric key crypto: DES DES: Data Encryption Standard US encryption standard [NIST 1993] 56-bit symmetric key, 64 bit plaintext input How secure is DES? –DES Challenge: 56-bit-key-encrypted phrase (“Strong cryptography makes the world a safer place”) decrypted (brute force) in 4 months –no known “backdoor” decryption approach making DES more secure –use three keys sequentially (3-DES) on each datum –use cipher-block chaining

Symmetric key crypto: DES initial permutation 16 identical “rounds” of function application, each using different 48 bits of key final permutation DES operation

Public Key Cryptography symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if never “met”)? public key cryptography radically different approach [Diffie- Hellman76, RSA78] sender, receiver do not share secret key encryption key public (known to all) decryption key private (known only to receiver)

Public key cryptography Figure 7.7 goes here

Public key encryption algorithms need d ( ) and e ( ) such that d (e (m)) = m B B B B.. need public and private keys for d ( ) and e ( ).. B B Two inter-related requirements: 1 2 RSA: Rivest, Shamir, Adelson algorithm

RSA: Choosing keys 1. Choose two large prime numbers p, q. (e.g., 1024 bits each) 2. Compute n = pq, z = (p-1)(q-1) 3. Choose e (with e<n) that has no common factors with z. (e, z are “relatively prime”). 4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1 ). 5. Public key is (n,e). Private key is (n,d).

RSA: Encryption, decryption 0. Given (n,e) and (n,d) as computed above 1. To encrypt bit pattern, m, compute c = m mod n e (i.e., remainder when m is divided by n) e 2. To decrypt received bit pattern, c, compute m = c mod n d (i.e., remainder when c is divided by n) d m = (m mod n) e mod n d Magic happens!

RSA example: Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively prime). d=29 (so ed-1 exactly divisible by z). letter m m e c = m mod n e l c m = c mod n d c d letter l encrypt: decrypt: