Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.

Slides:



Advertisements
Similar presentations
THE EFFECT OF 12 C(α,γ) 16 O ON WHITE DWARF EVOLUTION Pier Giorgio Prada Moroni Dipartimento di Fisica - Università di Pisa Osservatorio Astronomico di.
Advertisements

An exoplanet that orbits the blue subdwarf star V391 Pegasi Jadwiga Daszyńska-Daszkiewicz Instytut Astronomiczny, UWr. 12 September 2007, Journal Club.
Hot Subdwarf Stars Uli Heber Dr. Remeis-Sternwarte & ECAP University of Erlangen-Nürnberg Bamberg The late stages of stellar evolution: Some Prblems and.
Pulsations in White Dwarfs G. Fontaine Université de Montréal Collaborators: P. Brassard, P. Bergeron, P. Dufour, N. Giammichele (U. Montréal) S. Charpinet.
The Standard Solar Model and Its Evolution Marc Pinsonneault Ohio State University Collaborators: Larry Capuder Scott Gaudi.
Progress in the asteroseismic analysis of the pulsating sdB star PG S. Charpinet (Laboratoire d’Astrophysique de Toulouse) G. Fontaine and P.
Solar-like Oscillations in Red Giant Stars Olga Moreira BAG.
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University.
Tim Healy Tony Perry Planet Survey Mission. Introduction Finding Planets Pulsar Timing Astrometry Polarimetry Direct Imaging Transit Method Radial Velocity.
Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.
Observational properties of pulsating subdwarf B stars. Mike Reed Missouri State University With help from many, including Andrzej Baran, Staszek Zola,
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
Ben Maughan (CfA)Chandra Fellows Symposium 2006 The cluster scaling relations observed by Chandra C. Jones, W. Forman, L. Van Speybroeck.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
SOLUTION 1: ECLIPSING BINARIES IN OPEN CLUSTERS The study of eclipsing binaries in open clusters allows strong constraints to be placed on theoretical.
HIGH-PRECISION PHOTOMETRY OF ECLIPSING BINARY STARS John Southworth + Hans Bruntt + Pierre Maxted + many others.
Are These Stars? Definition of a Star (1) Bound by self gravity (spherical) (1) Bound by self gravity (spherical) Is this strictly true? (2)
Exoplanet Transits and SONG Angelle Tanner. Venus Transiting the Sun.
All About Exoplanets Dimitar D. Sasselov Harvard-Smithsonian Center for Astrophysics.
The Effects of Mass Loss on the Evolution of Chemical Abundances in Fm Stars Mathieu Vick 1,2 Georges Michaud 1 (1)Département de physique, Université.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Inversion of rotation profile for solar-like stars Jérémie Lochard IAS 19/11/04.
Marc Pinsonneault (OSU).  New Era in Astronomy  Seismology  Large Surveys  We can now measure things which have been assumed in stellar modeling 
Improving our understanding of Stellar Evolution with PLATO 2.0
A Maximum Likelihood Method for Identifying the Components of Eclipsing Binary Stars Jonathan Devor and David Charbonneau Harvard-Smithsonian Center for.
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
C/O abundance in white dwarf interior The asteroseismological data Need higher 12 C+a ? Different convective schemes The effect of 12 C+a So what?
Planet Masses and Radii from Physical Principles Günther Wuchterl CoRoT / DLR Thüringer Landessternwarte Tautenburg.
July Benoît Mosser Observatoire de Paris LESIA Mixed modes in red giants: a window on stellar evolution Stellar End Products Stellar End Products:
Jian-Yang Li, University of Maryland Marc Kuchner, NASA Goddard Space Flight Center Ron Allen, Space Telescope Science Institute Scott Sheppard, Carnegie.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
Future of asteroseismology II Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Dansk AsteroSeismologisk Center.
The formation of sdB stars vvv Influence of substellar bodies on late stages of stellar evolution Valerie Van Grootel (1) S. Charpinet (2), G. Fontaine.
Scientific aspects of SONG Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
Limits on Solar CNO From Session 13 IAU - XXVIII GA Aldo Serenelli Institute of Space Sciences (CSIC-IEEC) Bellaterra, Spain Beijing.
1 II-6 Stellar Mass and Binary Stars (Main Ref.: Lecture notes; FK Sec.4 - 4, 6, 7; 17-9, 10, and 11, Box 4-2, 4-4) II-6a. Introduction If the star is.
Excitation and damping of oscillation modes in red-giant stars Marc-Antoine Dupret, Université de Liège, Belgium Workshop Red giants as probes of the structure.
The asteroseismic analysis of the pulsating sdB Feige 48 revisited V. Van Grootel, S. Charpinet, G. Fontaine P. Brassard, E.M. Green and P. Chayer.
Mean period of pulsating white dwarfs as a spectroscopy-independent thermometer Anjum S. Mukadam, University of Washington Collaborators: M. H. Montgomery.
Valerie Van Grootel(1) G. Fontaine(2), P. Brassard(2), and M. A
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
Travis Metcalfe (NCAR) Asteroseismology with the Kepler Mission We are the stars which sing, We sing with our light; We are the birds of fire, We fly over.
Asteroseismology of evolved stars: from hot B subdwarfs to white dwarfs Valerie Van Grootel Université de Liège, FNRS Research Associate Main collaborators:
A Practical Introduction to Stellar Nonradial Oscillations (i) Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF.
A STEP Expected Yield of Planets … Survey strategy The CoRoTlux Code Understanding transit survey results Fressin, Guillot, Morello, Pont.
Modelling high-order g-mode pulsators Nice 27/05/2008 A method for modelling high-order, g-mode pulsators: The case of γ Doradus stars. A. Moya Instituto.
Asteroseismology A brief Introduction
Extrasolar Planets The Next Decade Dante Minniti, Católica Steve Vogt, UC Santa Cruz Chris Tinney, UNSW Pamela Arriagada, Católica The discovery of extrasolar.
Precision stellar physics from the ground Andrzej Pigulski University of Wrocław, Poland Special Session #13: High-precision tests of stellar physics from.
The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means Valerie Van Grootel (1) G. Fontaine (2), P. Brassard (2),
The Role of Transiting Planets Dave Latham (CfA) 30 May 2008.
The Saga of Procyon Pierre Demarque Yale University “Stars in Motion” A Symposium in honor of Bill van Altena September
Sounding the cores of stars by gravity-mode asteroseismology Valerie Van Grootel (Institut d’Astrophysique, University of Liege, Belgium) Main collaborators.
Subdwarf B stars from He white dwarf mergers Haili Hu.
Asteroseismology of Sun-like Stars
Internal dynamics from asteroseismology for two sdB pulsators residing in close binary systems Valérie Van Grootel (Laboratoire d’Astrophysique de Toulouse.
HD and its super-Earth Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge),
Nordforsk 2012, Moletai, August 2, 2012 Roy H. Østensen Compact Pulsators Observed by Kepler Roy H. Østensen KU Leuven, Belgium.
Nordforsk 2012, Moletai, 2012/08/03 - Roy H. Østensen Observational Asteroseismology of Hot Subdwarf Stars ___ Roy H. Østensen KU Leuven, Belgium.
Spectroscopy and the evolution of hot subdwarf stars
The Kepler Mission S. R. Kulkarni.
Advantages and Strategies for Direct Imaging and Characterization of Exoplanets: 5-minute Summary Wesley A. Traub Jet Propulsion Laboratory, California.
1 / 12 Simultaneous Spectroscopic & Photometric Observations of a Transit of TrES-1b Norio Narita (UT, JSPS Fellow) Collaborators K. Enya (JAXA), B. Sato.
An asteroseismic data-interpretation pipeline for Kepler
Overview of the SONG project
Ageing low-mass stars: from red giants to white dwarfs
Goal: To learn about the Kepler Mission and the Transit Method
Pulsar Timing Score = 33 How it works
ASTEROSEISMOLOGY OF LATE STAGES OF STELLAR EVOLUTION
Presentation transcript:

Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP Toulouse), G. Fontaine (U. Montreal), P. Brassard (U. Montreal), and E.M. Green (U. Arizona) IAU Symposium 301 Precision Asteroseismology The case of hot subdwarf B stars

Valérie Van Grootel – IAU Symposium Introduction to hot subdwarf B (sdB) stars Hot (T eff  K) and compact (log g  ) stars Core He-burning, extremely thin H-rich envelope sdBs are thought to be post-RGB stars having lost most of their H-envelope through binary interaction (stellar, sub-stellar and planet) p-mode and g-mode pulsators To date: 15 sdB pulsators modeled by seismology Mass distribution of sdB stars Mass: ~1% precision log g: ~0.1% precision Radius: ~0.6% precision Is this reliable? Is this accurate? Is this really so precise?

Valérie Van Grootel – IAU Symposium PG , the Rosetta stone of sdB seismology pulsating sdB+dM eclipsing binary (P orb =2.4244h) Eclipses and light curve modeling (multicolor photometry +accurate spectroscopy (RV curve orbital solutions for mass, radius (and log g) of the sdB component (Vuckovic et al. 2007, A&A, 471, 605) Whole Earth Telescope campaign: 25 pulsation periods for the sdB component in the range s (p-modes), Kilkenny et al (MNRAS, 345, 843)

Valérie Van Grootel – IAU Symposium The forward modeling approach for asteroseismology The method consists of finding the best possible match between the observed frequencies and those computed from models  optimization procedure Stellar model computation Pulsation computation Observations Computed periods Observed periods Period matching code (Genetic Algorithm) Mode identification (if available) min. S 2 (a 1,a 2,..,a N ) Spectroscopy (T eff, log g) the optimal model is the seismic solution Parameters (a 1,a 2,..,a N )

Valérie Van Grootel – IAU Symposium The forward modeling approach for asteroseismology Error estimates: using probability distributions (Van Grootel et al. 2013,A&A, 553, 97) Likelihood function Probability density function for parameter a 1 (ex. mass): (with) Questions : Is the best-fit model the most representative model of the star? Are seismic estimates accurate (do model uncertainties introduce systematics on parameters determined from seismology)? Are seismic estimates precise (error estimates reliable)?

Valérie Van Grootel – IAU Symposium Seismic analysis of the pulsating sdB PG Optimization procedure is launched in a vast parameter space where sdB stars are found (details in Van Grootel et al. 2013, A&A, 553, 97) Best-fit solution to the 25 observed periods: 6 3 orbital solutions (Vuckovic et al. 2007) for the sdB mass Density of probability sdB mass from seismology: ± Ms (1.3% precision) Consistent within 1σ the orbital mass ± Ms No significant difference, the mass measurement is accurate The best-fit mass (min. S 2 ) is in the 1σ range (not an outlier) Optimal model (min S 2 ) 1σ range

Valérie Van Grootel – IAU Symposium Seismic analysis of the pulsating sdB PG Seismic solution: ± Rs (0.6% precision) Orbital solution: 0.15 ± 0.01 Rs Stellar radius Surface gravity log g Seismic solution: ± (0.1% precision) Orbital solution: 5.77 ± 0.06 Spectroscopy: ± No significant difference, R and log g are accurately derived Best-fit (min S 2 ) R and log g in the 1σ range Optimal model (min S 2 ) 1σ range

Valérie Van Grootel – IAU Symposium Precision and accuracy of seismology In summary: Stellar models for asteroseismology of sdB stars allow for both precise and accurate determinations of the stellar parameters, in particular mass and radius. But how do the model uncertainties impact this result ? 3 main sources of uncertainties in sdB models: Envelope Iron profile (standard: radiative levitation=gravitational settling) Core/envelope transition profile (standard: not smoothed by diffusion) He-burning nuclear reaction rates (standard: Caughlan & Fowler 1988) 8

Valérie Van Grootel – IAU Symposium Precision and accuracy of seismology: envelope iron profile Green: uniform solar profile Black: standard profile (radiative levitation = gravitational settling) Red: standard/2 Blue: standard/4 No drift on stellar mass 2σ drift on log g and radius Despite significant changes in the iron abundance profiles, the derived parameters are mostly unaffected (e.g. the mass) or only subject to very small systematic drifts We redo 3 seismic analyses of PG with the modified models. Results:

Valérie Van Grootel – IAU Symposium Precision and accuracy of seismology No significant drift on stellar mass, radius and log g Core/Envelope transition profileHe-burning rate: 12 C(α,γ) 16 O x2 The seismic solution is robust against uncertainties in the constitutive physics of the models sharp smooth (Angulo et al. 1999)

Valérie Van Grootel – IAU Symposium Conclusion Conclusion: We can indeed achieve ~1% accuracy for mass and radius determinations from asteroseismology Remarks: We are still (very) far from reproducing the precision of the observations (1 nHz for Kepler, 0.1μHz for ground-based; vs 10μHz for seismic model) Asteroseismology has still not delivered its full potential Seismic parameters determined from asteroseismology for sdB stars are both precise, accurate, and robust again model uncertainties The best-fit (optimal) model is the most representative model of the star -To provide extremely accurate global parameters (M, R, log g…) -To probe internal structure, composition and physics (effects of diffusion…). Sensitivity of g-modes to the stellar interior.