Blazars as beamlights to probe the EBL Problem: EBL, emitted SED: both unknown ! Aim: measure n EBL (z) at different redshifts  local normalization, cosmic.

Slides:



Advertisements
Similar presentations
Fermi rules out EC/CMB as the X-ray emission mechanism for 3C 273 Markos Georganopoulos 1,2 Eileen T. Meyer 3 1 University of Maryland, Baltimore County.
Advertisements

Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
Longterm X-ray observation of Blazars with MAXI Naoki Isobe (Kyoto University; & MAXI
R. M. Wagner: AGN observations with MAGIC – p.1 R. M. W AGNER Max-Planck-Institut für Physik, München on behalf of the MAGIC C OLLABORATION AGN Observations.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Blazar Gamma-ray absorption by cosmic radiation fields GRB Fermi z~60-6 CTA Susumu Inoue (Kyoto University) with (more than) a little help from my friends.
Observations of the AGN 1ES with the MAGIC telescope The MAGIC Telescope 1ES Results from the observations Conclusion The MAGIC Telescope.
MAGIC TeV blazars and Extragalactic Background Light Daniel Mazin on behalf of the MAGIC collaboration Max-Planck-Institut für Physik, Munich.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
TeV blazars and their distance E. Prandini, Padova University & INFN G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio Cosmic Radiation Fields - Sources.
Karsten Berger On behalf of the MAGIC Collaboration.
Naoki Isobe, Yoshihiro Ueda (Kyoto University) Kousuke Sugimori, Nobuyuki Kawai (Tokyo Tech.) Hitishi Negoro (Nihon Univ.) Mutsumi Sugizaki, Masaru Matsuoka.
Observations of LBLs with STACEE Reshmi Mukherjee, Barnard College, Columbia University, New York Solar Tower Atmospheric Cherenkov Effect Experiment Air.
Measuring the Diffuse Extragalactic Background Light as a function of redshift Cosmic History of Star Formation: Holy Grail of Observational Cosmology.
The questions: How can gamma-ray blazar statistics be parameterized? What parameters fit EGRET data best? –Blazar redshift distribution [ N vs z ] –Blazar.
H.E.S.S. observations of AGN “probing extreme environments with extreme radiation” Anthony Brown National Astronomy Meeting, 2006 H.E.S.S. = High Energy.
Models for non-HBL VHE Gamma-Ray Blazars Markus Böttcher Ohio University, Athens, OH, USA “TeV Particle Astrophysics” SLAC, Menlo Park, CA, July 13 – 17,
TeVPA, SLAC, 2009 Pratik Majumdar DESY, Zeuthen (for the MAGIC Collaboration) Outline:  MAGIC Telescope  Observations of High redshift AGNs  Conclusions.
Extragalactic Source Populations of VHE Gamma Rays Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck-Institut f. Kernphysik, Heidelberg.
Numerical Modeling of Electromagnetic Radiation from AGN Jets Based on  -ray emission and spectral evolution of pair plasmas in AGN jets Bottcher et al.
New Limits On The Density Of The Extragalactic Background Light From The Spectra Of All Known TeV Blazars Daniel Mazin Max-Planck-Institut für Physik,
Mid-Atlantic Radio-Loud AGN Meeting, 27 September 2013 , STScI
Measuring the GRH and the cosmological parameters with MAGIC Oscar Blanch IFAE, Universitat Autònoma de Barcelona ISCRA 2002 June 2002.
Multi-wavelength AGN spectra and modeling Paolo Giommi ASI.
The role of GLAST in multiwavelength observations of bright TeV blazars D. Paneque J.Chiang, B. Giebels, V. Lonjou, B.Lott,
1 Possible indirect evidence for axion-like particles from far away AGN? Alessandro De Angelis INFN, INAF and Udine University Photon propagation Observation.
Extreme TeV Blazars and InterGalactic Magnetic Fields Timothy C. Arlen, Vladimir V. Vassilev University of California-Los Angeles.
The Origin of the Extragalactic Background Light: Constraints from High Energy Gamma-Ray Observations ? P. Coppi Yale University.
Swift Annapolis GRB Conference Prompt Emission Properties of Swift GRBs T. Sakamoto (CRESST/UMBC/GSFC) On behalf of Swift/BAT team.
1 1 Alessandro De Angelis, INAF INFN/Univ. Udine & IST Milano 09 Dark matter Rapid variability Does c depend on the photon energy? Anomalies in the propagation.
Recent results from MAGIC Alessandro de Angelis Univ. Udine, INFN Trieste Bremen, July 2010 Alessandro de Angelis Univ. Udine, INFN Trieste Bremen, July.
Long-term monitor on Mrk 421 using ARGO-YBJ experiment S.Z Chen (IHEP/CAS/China, On behalf of the ARGO-YBJ collaboration  1. Introduction.
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
S CUOLA DI D OTTORATO DI R ICERCA IN F ISICA C ICLO XXIII S CUOLA DI D OTTORATO DI R ICERCA IN F ISICA C ICLO XXIII D IRETTORE DELLA S CUOLA : P ROF. A.
Leptonic and Hadronic Modeling of Gamma-Ray Blazars Markus Böttcher and Anita Reimer North-West University Universit ӓ t Innsbruck Potchefstroom, Innsbruck.
STATISTICAL ACCELERATION and SPECTRAL ENERGY DISTRIBUTION in BLAZARS Enrico Massaro Physics Department, Spienza Univ. of Roma and Andrea Tramacere ISOC,
Minimum e Lorentz factor and matter content of jet in blazars Qingwen Wu Huazhong University of Science and Technology, China S.-J. Kang & L. Chen Collaborators:
Flat Radio Sources. Almost every galaxy hosts a BH 99% are silent 1% are active 0.1% have jets.
CTA Cherenkov Telescope Array CTA Josep-M.Paredes & Massimo Persic for CTA Consortium Vulcano, May 30, 2009.
M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut) for MAGIC collaboration MAGIC.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
MAGIC Recent AGN Observations. The MAGIC Telescopes Located at La Palma, altitude 2 200m First telescope in operation since 2004 Stereoscopic system in.
MAGIC Results Alessandro De Angelis INFN, IST and University of Udine ECRS Lisboa, September 2006.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Il (tl) = Il (0) e-t(l) + Bl(T) (1 – e-t(l))
Massimo Persic INAF/INFN-Trieste MAGIC Collaboration GeV-TeV prospects & results Issues :  Origin & diffusion properties of Galactic CRs: Main accelerators:
F. Volpe RICAP Rome Francesca Volpe for the H.E.S.S. collaboration Ecole Polytechnique - France H.E.S.S. observations of Active Galactic Nuclei.
44 th Rencontres de Moriond - La Thuile, Valle d’Aosta, February 1-8, 2009 The MAGICextragalactic sky The MAGIC extragalactic sky Barbara De Lotto Università.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Blazars: the gamma-ray view of AGILE on behalf of the AGILE WG-AGN Filippo D’Ammando Università degli Studi di Roma “Tor Vergata” INAF - Istituto di Astrofisica.
A new light boson from Cherenkov telescopes observations? A.De Angelis, M. Roncadelli, O. Mansutti.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
A Simple Analytic Treatment of the Intergalactic Absorption Effect in Blazar  -ray Spectra Introduction Stecker, Malkan, & Scully (2006) have made a detailed.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
Anita Reimer, HEPL/Stanford University GLAST-lunch talk, 23 February 2006 On the diffuse AGN contribution to the extragalactic  -ray background (EGRB)
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
MAGIC Max Planck Institut fürPhzsik The MAGIC Telescope ShangYu Sun A. Boller, L. Fortson, N. Galante, D. Paneque and B. Steinke On behalf of the Fermi,
Two exceptional γ -ray flares of PKS and their implications on blazar and fundamental physics Rolf Bühler MPIK Heidelberg KIPAC Tea Talk SLAC.
Thermal electrons in GRB afterglows, or
Mathew A. Malkan (UCLA) and Sean T. Scully (JMU)
H.E.S.S. Blazar Observations:
Lecture 5 Multi-wavelength cosmic background
X-Rays -> see you at COSPAR in July; also Kawai’s talk this conf.
Nijil Mankuzhiyil INFN Trieste & University of Udine, Italy
Presentation transcript:

Blazars as beamlights to probe the EBL Problem: EBL, emitted SED: both unknown ! Aim: measure n EBL (z) at different redshifts  local normalization, cosmic evolution Tools: homogeneous different redshifts  one same model (parameters) at all z blazars ( e.g., High-Peaked BLs [HBLs] ) Emission physics: simple  one-zone SSC emission  synchrotron + compton, PL electron spectrum Nijil Mankuzhiyil (INFN, Udine U.) Massimo Persic (INAF+INFN, Trieste) Fabrizio Tavecchio (INAF, Milano)

One-zone SSC: model parameters : Plasma blob: R, B,  j Electron pop: n 0,  1,  2, E br, E min, E max Kino Tavecchio ApJ, 554, 725

Simultaneous multi- obs’s:  optical    X-rays    HE  -ray  VHE  -ray Model SED : use SED w/out (EBL-affected) VHE  -ray data :   2 -minimization  SSC model ( check structure of multi-D parameter space ) TTTTTTTTTTTTTTTT simulated data The method ( 1 )

Extrapolate model SED into VHE regime  “intrinsic” blazar VHE emission Observed vs “intrinsic” emission    (E,z) Assume (concordance) cosmology  n EBL ( ,z j ) (parametric:  a nj  n ) s i m u l a t e d d a t a …the method ( 2 )

EBL de-absorbed Aharonian ApJ, 696, L150 HESS FERMI R XTE ATOM … assumed electron spectrum is triple -PL … … caveat… Swift Checking the method … locallyPKS z = 0.12 SSC param’s  min = 1  br1 = 1.4  10 4  br2 = 2.3  10 5  max = 3  10 6  1 = 1.3  2 = 3.2  3 = 4.3 B = G R = 1.5  cm  = 32

data: Aharonian ApJ, 696, L150 … our effort H.E.S.S. Fermi ATOM Swift, RXTE R   t  12 hr  OK observed SSC parameters from  2 minim. n e =150 cm   min = 1  br = 2.9  10 4  max = 8  10 5  1 = 1.8  2 = 3.8 B = G R = 3.87  cm  = 29.2

p r e l i m i n a r y

Stecker 1999 z=0.12 p r e l i m i n a r y Stecker & de Jager 1998 Malkan & Stecker 1998

Franceschini z=0.1 z=0.003 z=0.01 z=0.03 z=0.3 z=0.12 p r e l i m i n a r y

 (E,  )  max by ( for head-on collision )  2.5 E , TeV  m Heitler 1960  (E ,z) =  d l /d z  x /2  n EBL (  )  ( 2xE  /(1+z) 2 ) d  d x d z  (E, ,  )  [1 – 2(m e c 2 ) 2 / E  (1-cos  )] 1/2 0  z  z s  > 2(m e c 2 ) 2 / [Ex(1+z) 2 ] For EBL photon energies  > 2(m e c 2 ) 2 / E (1-cos  ) x  1-cos  n EBL ( ,z) unknown  parameterize n EBL (  n  z j ) =  a n,j  n (E,,)(E,,) Stecker 1971 cosmology Stecker 1999 Optical depth

Conclusion Cons: indirect measurement of EBL method depends on blazar model Pros: unbiased method no assumptions on EBL, blazar SED SSC well tested locally on different emission states Need: simultaneous multi- obs’s of several blazars in shells of z possibly each source different levels of activity ( to increase statistics )  plan simultaneous obs’s involving IACTs + Fermi + X-rays + optical Aim: to probe EBL out to z  1 with Fermi/LAT + current/upcoming enhanced IACTs ( + x-ray, optical tel’s ) (  long live Fermi to see CTA / AGIS !! ) Check: on local (z=0.12) blazar PKS deduced  ’s within reasonable range

Thanks