1 Ferromagnetic Josephson Junction and Spin Wave Resonance Nagoya University on September 5,2009 Sadamichi Maekawa (IMR, Tohoku University) Co-workers:

Slides:



Advertisements
Similar presentations
October , Chernogolovka 1 Physikalisch-Technische Bundesanstalt, Braunschweig M. Khabipov, D. Balashov, F. Maibaum, A. Zorin Physikalisch-Technische.
Advertisements

Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Shuichi Noguchi, KEK6-th ILC School, November Shuichi Noguchi, KEK6-th ILC School, November RF Basics; Contents  Maxwell’s Equation  Plane.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Superconducting Quantum Interference Device SQUID C. P. Sun Department of Physics National Sun Yat Sen University.
Andreev Reflection in Quantum Hall Effect Regime H. Takayanagi 髙柳 英明 Tokyo University of Science,Tokyo International Center for Materials NanoArchitechtonics.
Small Josephson Junctions in Resonant Cavities David G. Stroud, Ohio State Univ. Collaborators: W. A. Al-Saidi, Ivan Tornes, E. Almaas Work supported by.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
1 SQUID and Josephson Devices By : Yatin Singhal.
Dale Van Harlingen Sergey Frolov, Micah Stoutimore, Martin Stehno University of Illinois at Urbana-Champaign Valery Ryazanov Vladimir Oboznov, Vitaly.
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
B.Spivak with A. Zuyzin Quantum (T=0) superconductor-metal? (insulator?) transitions.
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
Magnetic sensors and logic gates Ling Zhou EE698A.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
The Three Hallmarks of Superconductivity
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Beyond Zero Resistance – Phenomenology of Superconductivity Nicholas P. Breznay SASS Seminar – Happy 50 th ! SLAC April 29, 2009.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
J. R. Kirtley et al., Phys. Rev. Lett. 76 (1996),
PY212 Electricity and Magnetism I. Electrostatics.
Superconductivity III: Theoretical Understanding Physics 355.
1 PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 Plan for Lecture 34: Special Topics in Electrodynamics: Electromagnetic aspects of superconductivity 
Lucian Prejbeanu Spin dynamics workshop, Corfu, october 2005 Traian PETRISOR Master 2 Internship Internship Coordinator Ursula EBELS Magnetization dynamics.
SQUIDs (Superconducting QUantum Interference Devices)
Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices V. N. Krivoruchko.
Interplay of Magnetic and Superconducting Proximity effect in F/S hybrid structures Thierry Champel Collaborators: Tomas Löfwander Matthias Eschrig Institut.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Michael Browne 11/26/2007.
Quantum Design PPMS & Transport and Magnetic Measurements.
EPR OF QUASIPARTICLES BY FLUCTUATIONS OF COOPER PAIRS Jan Stankowski Institute of Molecular Physics, Polish Academy of Sciences Kazimierz Dolny 2005.
University of Alabama MRSEC William H. Butler DMR Theory of Tunneling Magnetoresistance Leads to New Discoveries with Potential Technological Impact.
Practice of students from ARAB REPUBLIC OF EGYPT 2009
Introduction to Josephson Tunneling and Macroscopic Quantum Tunneling
Entanglement for two qubits interacting with a thermal field Mikhail Mastyugin The XXII International Workshop High Energy Physics and Quantum Field Theory.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
I NTERLAYER E XCHANGE C OUPLING, P AIR B REAKING & 2D V ORTEX D YNAMICS IN F ERROMAGNET - S UPERCONDUCTOR H ETEROSTRUCTURES R. C. B UDHANI Indian Institute.
R OLE OF D ISORDER IN S UPERCONDUCTING T RANSITION Sudhansu S. Mandal IACS, Kolkata HRI 1.
Sangita Bose, Bombay Antonio Bianconi, Rome Welcome !!! A. Garcia-Garcia, Cambridge.
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
Anomalous Local Transport in MicrofabricatedSr 2 RuO 4 -Ru Eutectic Junction Univ. AISTHiroshi Kambara Satoshi Kashiwaya Tokyo.
Spin Wave Model to study multilayered magnetic materials Sarah McIntyre.
Pinning Effect on Niobium Superconducting Thin Films with Artificial Pinning Centers. Lance Horng, J. C. Wu, B. H. Lin, P. C. Kang, J. C. Wang, and C.
Superconducting Tunneling Through Spin Filter Barriers Mark Blamire, Avradeep Pal, Jason Robinson, Zoe Barber Cambridge University Department of Materials.
AC Susceptibility Adrian Crisan National Institute of Materials Physics, Bucharest, Romania.
This work is supported by the US DOE/HEP and also by the ONR AppEl, and CNAM. Comparison Between Nb and High Quality MgB 2 Films for Their Mesoscopic Surface.
Superconductivity, Josephson Junctions, and squids
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Spin-Orbit Torques from Interfacial Rashba-Edelstein Effects
Department of Electronics
Unbound States A review on calculations for the potential step.
Fundamentals of Applied Electromagnetics
BCS THEORY BCS theory is the first microscopic theory of superconductivity since its discovery in It explains, The interaction of phonons and electrons.
Spontaneous Symmetry Breaking and Analogies to the Higgs-Mechanism
Graduate Lecture Series
Experimental Evidences on Spin-Charge Separation
Phase Dynamics of the Ferromagnetic Josephson Junctions
Avigail Gil & Roy Rabaglia 10/8/17
Shanghai Jiao Tong University
Analysis of proximity effects in S/N/F and F/S/F junctions
PY212 Electricity and Magnetism
Special Topics in Electrodynamics:
Ginzburg-Landau theory
Presentation transcript:

1 Ferromagnetic Josephson Junction and Spin Wave Resonance Nagoya University on September 5,2009 Sadamichi Maekawa (IMR, Tohoku University) Co-workers: S. Hikino, M. Mori, S. Takahasi (IMR, Tohoku University) I. Petkovic, M. Aprili (Univeriste Paris-Sud) S. E. Barnes (University of Miami) Reference: I. Petkovic, M. Aprili, S.E.Barnes, F.Beuneu and S.Maekawa: to be published.

2 Outline 1. Superconducting phase difference Josephson effect, Phase difference coupled with magnetic field, Resistively shunted junction (RSJ) model, I-V characteristic, Ferromagnetic Josephson junction (SC/FM/SC junction) 2. Magnetization dynamics in ferromagnet (FM) Ferromagnetic resonance (FMR) 3. Coupled superconducting phase and magnetization dynamics Ferromagnetic Josephson junction Differential resistance 4. Model RSJ model + Maxwell’s equation + LLG equation 5. Differential resistance FMR signal 6. Summary

3 DC Josephson Effect I or NM x SC LL RR d I; Insulator Cooper pair NM; Normal metal Thickness dependence of I c IcIc d Penetration depth of order parameter to barrier NM ; I ; 0 Current flow without voltage drop Phase difference between superconductors dc Josephson effect I J = I c sin(  ) Josephson current V I Current-Voltage characteristic B.D.Josephson Phys. Lett. 1, 251 (1962) Josephson critical current IcIc 0

4 Properties of superconducting phase difference Fraunhofer pattern ・ Gauge invariant phase Magnetic field B LL RR Vector potential ; ・ Josephson current density z  ∝  Flux    Magnetic flux quantum y x

5 Dynamics of SC phase difference B.D.Josephson Phys. Lett. 1, 251 (1962) W. C. Stewart, APL. 12, 277 (1968) D. E. McCumber, JAP. 39, 3113 (1968) SC X SC : superconductor Dynamics of superconducting phase LL RR Cooper pair Josephson current R RSJ model V I Phase dynamics Current equation ・ Phase difference ・ AC Josephson current DC voltage AC current :Josephson frequency t IJIJ

6 Josephson Effect in ferromagnetic Josephson junction (FJJ) ・ Josephson current  Phase difference between SC’s d IcIc 0 A. I. Budzin, Rev. Mod. Phys. 76, 411 (2004)  Current-phase relation 0-state SC/NM/SC junction FJJ junction SC NM k FM E I J = I c sin(  )  -state I J = I c sin(  )

7 Josephson Coupling SFS I+ V+ d F1 d F2 V- I- Kontos et al. PRL 89, (2002) I (mA) V (mV) x10 SIS SIFS I-V characteristics IcRn(µV) d F (Å) experiment at 1.5K theory R Interface =   F = 46 Å Nb Pd 1-x Ni x 0 state  state

8 Diffraction Pattern d F (Å) +- I=-I c sin  I=I c sin  0-junction  -junction I c (  /o/o I c (  /o/o

9 SC/F/SC junction Ryazanov et al., PRL 86, 2427 (2001) S/F/S junction S/N/S π-state 0-state S F FSS θ θ+πθ+π FSS θθ

10 Magnetization dynamics in FM Landau-Lifshitz-Gilbert (LLG) equation Ferromagnetic resonance (FMR) x y z Ferromagnetic thin film DC magnetic field RF-magnetic field M : Magnetization M H eff

11 Phase dynamics Magnetization dynamics  t  MtMt SC FM Coupling

12 Model x y M SC FM M is parallel to x axis. d is thickness of FM L is width of junction SC z Josephson current density Phase difference d L Vector potential coupled with M dynamics M z x y B i : Dynamical flux density i=y,zi=y,z Josephson frequency RSJ model : FJJ i ; Current density i c ; Critical current density

13 Procedure of calculation ・ First step : ・ Second step Using the solution of Maxwell’s and LLG equations Phase difference Magnetic field Ampere’s law Ac magnetic field due to ac Josephson current M Precessional M Magnetic flux density B Ac Josephson current Dynamical flux coupled with M dynamics i=y,zi=y,z

14 Analytic formula of dc Josephson current i=y,zi=y,z Magnetic susceptibility H K : anisotropic field Josephson frequency Self-induced ferromagnetic Josephson resonance FMR induced by ac Josephson current SC FM SC M z x y

15 Voltage dependence of dV/dI V [  V] FJJ CJJ FMR CJJ : Conventional Josephson junction W. C. Stewart, APL. 12, 277 (1968) D. E. McCumber, JAP. 39, 3113 (1968) RSJ model dV/dI [  ] V [  V] dV/dI [  ]

16 In conclusion : SC/FM/SC Josephson junction. Dynamical coupling between SC phase and magnetization. Ferromagnetic Josephson resonance on 10 7 Ni atoms.